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In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector
relations. The relations are sufficient conditions for the elements to span minimal ideals and

hence to define algebraic spinors.

i. INTRODUCTION

Clifford algebras have been used in theoretical physics
in a number of applications'~* (Ref. 1 contains a list of refer-
ences on the subject). In the geometric algebra type of appli-
cation, Clifford algebra is used to express geometric trans-
formations on a linear space. Letting @ be an invertible
element of the algebra, the group of invertible elements acts
on the algebra by means of the transformation x—axa™',
where x is an arbitrary element. Clifford algebra is a graded
algebra, and the underlying vector space is the grade 1 part.
Invertible elements that leave the grade 1 part invariant form
the Clifford group, which contains physically important
groups, such as the orthogonal group, as subgroups. Ele-
ments belonging to even-grade parts of the algebra form a
subalgebra, and in Ref. 4 spinors are defined as members of
this subalgebra. The geometric interpretation of those spin-
ors is that they act on the vector space as dilations rotations.
Algebraic spinors are defined as elements of minimal left
ideals; as shown in Sec. III this is equivalent to the original
definition of the concept.® Minimal ideals of an algebra may
be viewed as representation spaces for irreducible represen-
tations, and therefore algebraic spinors belong to an irredu-
cible representation of the Clifford algebra.

Let C, denote the Clifford algebra based on a complex
n-dimensional vector space. Complexifying vector spaces is
not in the spirit of geometrical algebra, but the basis used as
the starting point in Sec. II is obtained from a basis with
arbitrary signature by means of Witt’s decomposition. The
decomposition of C, algebras into minimal ideals described
below is constructive. Projectors are not postulated but ex-
pressed as Clifford products of isotropic basis vectors, a con-
struction due to Schénberg.® The results concerning irredu-
cible representations obtained below are not new. Deriving
them in the framework of projector bases shows that the
latter span minimal ideals. As all minimal left ideals yield
equivalent representations, a fact which becomes apparent
in the present approach is usually overlooked: any element of
the algebra may be decomposed into a sum of algebraic spin-
ors belonging to a set of minimal ideals. Left multiplication
leaves left ideals invariant. The situation is reminiscent of
irreducible subspaces under the action of a group. In the case
of groups this leads to conservation laws; whether the same
is true for algebras is a question left for further investiga-
tions. As an example testing the validity of the expansions
obtained, it is shown that Cartan’s matrix representation
and defining relation for spinors are recovered in this way.
Section II contains the treatment of C,,, Clifford algebras
based on even-dimensional complex vector spaces, and Sec.
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111 extends the results to C,,,, ., Clifford algebras based on
odd-dimensional complex vector spaces. The relation to
Cartan'’s theory of spinors is described in Sec. IV.

. C,,, ALGEBRAS

A set of basis vectors may be found such that

e, e =0y
ejej = —0,
e e =0, ij=1..,m

The set of 2m vectors I,, I' defined by
I,' = %(ei -+ e}),

I'=1(e, —e))
are new basis vectors satisfying the scalar product relations
I, =0,
I"I’'=qQ,
I-I'=168.
Expressed as Clifford products the relations above are
LI + Il =0,
I'+I'1'=0, n
LI+ Il =§.

The vectors I; and I' span isotropic subspaces, and the
duality of the two sets is indicated by subscripts and super-
scripts. From the relations above it follows that, restricted to
the isotropic subspaces, the Clifford algebra reduces to a
Grassman algebra. The element

11~-m x1112, fm
has the property
I:‘I!--.mzo’ (2)

for all vectors I'. The same is valid in the dual space. As the
basis I;, I' is not orthogonal, we have to demonstrate a pre-
liminary proposition.

Proposition A: Letting e,,...,e, be the basis vectors of an
n-dimensional vector space, the 2" ordered Clifford prod-
uctse; e, *--e; withi, <4’ - <i,, andm = 0,...,n are abasis
of the algebra.

It is well known that exterior products of basis vectors
are a basis of the algebra. In the case of orthogonal vectors
Clifford products of vectors coincide with exterior products,
and the proposition is trivial. In the general case the proposi-
tion results from the following relations, given without
proof.
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Proposition B: The Clifford product of » vectors can be
expressed as the sum of all possible contractions of the exte-
rior product:

X‘Xz' . .Xr

=(1+ZC,.1.+

i) (kD

The contraction C;; is defined as

C;,(X)AX, - AX))
A ~

=(— )V(Xi'Xj)XlAXz'"X,~"‘XJ»“‘AX,,
yhg‘e v is the number of vectors between X; and X;, and
X;,X; indicates omission of the vectors. A converse of Propo-
sition B is valid.

Proposition C: The exterior product of r vectors can be

expressed as the sum of all possible anticontractions of the
Clifford product:

C..C, + ---)X,AX2-~AX,.

X,AX, -AX,

”

=(1+Z C; +

Gn kD

C,dcij + .t ')X1X2' * 'X,.

The anticontraction is defined as a contraction with op-
posite sign factor.

According to Proposition A, a basis of the algebra is
given by the ordered Clifford products

I’ IIj."'j\=1r'“‘[lllj..“1j" (3)
where subscripts are increasing, superscripts decreasing.
Since the vectors in the subset I; are orthogonal, Ij. . is an

exterior product, and the same holds for 7 A Following
Schoénberg® introduce elements of the algebra defined by

) JUNEESY Sl SN S all) A (4)

Py e
We call these elements projectors to describe their properties
outlined below. To simplify the notation let «, 8 be multi-
indices, i.e., an ordered subset of {1,2,...,m}. By convention
the ordering in superscripts is decreasing. The following
propositions is crucial or the development below.
Proposition D: The projectors P satisfy the relations

PPt =8P, (5)

T Pi=1 (6)

Relation (5), given by Schonberg,® may be obtained as fol-
lows. Let P be the projector

P=1I. 1™ '=LI'LI* I 1"
Since P is the product of commuting idempotent elements
LI, Pis idempotent: P2 = P.

Letting u = 1,...,m denote the full set of indices, from

relations (1), (2), and the dual of (2) the intermediate re-
sult

I*I 17T, = 8141,
is obtained. Relation (5) follows then from the fact that Pis
idempotent.

Relation (6) may be derived as follows: from (1) it fol-
lows that
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P= z ( _ )V(a)IaIa,

where v(a) is the number of indices in the subset . The sum
includes the null set for which v(a) =0, I* =1, = 1. We
have

SPE=S 1Pl =3 (=) I Iy;

only terms with NS = 0 are nonzero. Consider the sum of
terms such that aUfB = y:

SPI=S 17, 3 (-,
B y=0 a=0

The rearrangement of indices to obtain an ordered set does
not produce a sign change as it is done symmetrically in
subscripts and superscripts. The proof is completed by real-
izing that for a finite set, the number of subsets with an even
number of elements is equal to the number of subsets with an
odd number, so that =% _,( — )"® =0 except for ¥y =0,
where the result is 1. The proposition about finite sets used
above may be derived by induction. The proposition is valid
for one-element sets that have two improper subsets: the null
set and the full set.

To demonstrate the basis property of the projectors, we
express them as linear combinations of ordered products and
conversely. We have

Pg=I°PIl, =Y (—)""II"LI,
Y

=S (=,
Y

Nonzero terms are those with yNa =0 and yNB=0.
Reordering of indices in the antisymmetric exterior products
"% and I,,; may be required to obtain ordered products.
The converse relations are obtained using relation (6):

I°I, = D I°P3I, = > IPI°PII, = > PaE. (T)
Conditions for nonzero terms and rearrangements are as be-
fore. Let X and Y be elements of the algebra expanded in a
projector basis:

X=XgP%, Y=Y}PS,

where X 3,Y § are complex numbers and the summation con-
vention is used. From relation (5)

XY=(X;YL)P".
Let C(2™) designate a 2™ X 2™ complex matrix. We have
the following proposition.

Proposition E: C,,, algebras admit a C(2™ ) matrix rep-
resentation.

The second consequence of relation (5) is stated as fol-
lows.

Proposition F: The idempotent projector PS generates a
minimal left ideal spanned by the projectors P# with a fixed.

Let a, denote a fixed value of the multi-index a (the
summation convention does not apply to a,). We have

XPG =XLPOPG = X3P .

Letting A denote the algebra, algebraic spinor members of
the minimal left ideal AP 3’ may then be expanded as
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7 =1gP%,.

To Xed the mapping p(X): AP -+ AP 7 defined by n— X7
can be associated; p(X) is a representation of the algebra
p(XY) = p(X)p(Y). The representation is irreducible since
AP is minimal. A minimal ideal is generated by each idem-
potent projector P%§. The basis property of the projectors
shows that the ideals do not overlap, and relation (6) that
the algebra is completely reduced. All representations de-
fined by the minimal ideals are equivalent, since a one-to-one
mapping AP2 —AP% is defined by 7—7Pj. We have thus
recovered a theorem already given by Weyl,” which states
that central simple algebras have, up to equivalence, one ir-
reducible representation contained in the regular representa-
tion with a multiplicity equal to the dimensions of the for-
mer. [ The regular representation is the mappingp(a): 4 -4
defined by X—aX, and the representation space is obviously
identical to the algebra. ]

in. C,,,, ALGEBRAS

There is now an unpaired basis vector 7, with the follow-
ing scalar products:

It=1,
I, 1, =0,
I, I'=0.
Introduce the elements
I, =4(1+1).
It is easily seen that the following relations are satisfied:
I’ =I_,

I, 1_=0=1_1,.

The products above are Clifford products. Let @ be an index
with values 4+, — . As linear combinations of the elements
of an ordered product basis, the 2" elements I I, I, are a
basis of the algebra. We define a set of projectors

ag =1°01,1"I5. (8)
By straightforward computation it can be checked that the
projectors satisfy the relations

PZ"B'P:):ﬁ .= 6(0',(0" 5?7.: Z"ﬂ' (9)
and
S Po, =1

The basis property of the projectors derives from the rela-
tions to the elements of an ordered product basis,

ng = z ( - )V(a)laUBIme(a)IaU;f’
(10)

wty

U
11,1 =ZPZE(€Z)Q‘UV’
a

where e(a) = ( — )™+ ¥ is a sign factor. From relation
(9) it follows that the projectors P, with o fixed span a
subalgebra, and that C,,,, , is the direct sum of the two
subalgebras. The relation among components is now

(X;a’XB- a) (VY‘;—V’YS—Y — (Xl;—ay: Y’XB—aY‘; Y),
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and we have the following proposition.

Proposition G: C,,, , , algebras admit C(2™) e C(2™)
matrix representations.

In this case, the proposition about minimal ideals be-
comes the following.

Proposition H: The idempotent projector P ¢, generates
a minimal left ideal spanned by the projectors P2 with @
and « fixed.

The theorem about irreducible representations used for
C,., algebras cannot be applied here, since C,,, , | algebras
are not central and simple. According to the proposition
above we have that C,,, , , algebras have two irreducible
representations of dimension 2™ contained in the regular
representation with multiplicity 2™

IV. CONNECTION WITH CARTAN’S THEORY OF
SPINORS

We show that Cartan’s matrix representation is con-
tained in relation (10). Going back to indices, the expan-
sions of the basis vectors are

I'=P'+ 3 PI4 TPy 4,
J 7

Io—*:(-—)m(P'_ZP}i_{_zP‘éy_...)’
i 7

L=P+ 3P+ 3 Pt
J S

(1)

Here P=P, + P_ and P' = P, — P_. Numerical results
form=2,n=>5 are

['=P'— P}
12=P2+P;2,
Iozp’*val"P'zz'f'P'llzz,
I,=P1—P%2,
Izzpz'f"P:z-

If multi-indices are ordered none, 1, 2, 12, the matrices of

components relative to the projectors P?_; are

0 1 0 O

0 0

0 0

0 0

[0 0
0
0
0

(=

0
0
|0

oW —= 0O O O
SO O o -0

- OO QO

[]
o O Lo 0
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00 0 0
0 0 0 0
H:=Y1 0 0 o
0 0 0 0

The matrices are obtained by inspection of the preceding
relations and are identical with Cartan’s expression® (sub-
scripts are identified with Cartan’s primed indices). Car-
tan’s system of equations defining spinors® is obtained by
working out the components of the relation

7 =X¢,
where X is a vector,
X=XI+XI,+X'l,

and &, 7 are algebraic spinors,
7= ,,;o nil...,-PP';”"’,

§= 2 §i.---i,,Pi'+mip-
p=0

The result is obtained using (11) and (8):
P

Ty = $ (P,

k=1
+ ( - )PXO i + ZXjé—il"'ipj'
J

This is Cartan’s relation. However, Cartan’s theory goes be-

2522 J. Math. Phys., Vol. 29, No. 12, December 1988

yond the relation given above. The concept of pure spinor is
defined by nonlinear constraints on the components of alge-
braic spinors, and lies outside of the theory of irreducible
representations.

V. CONCLUSION

The construction of projector bases leads to the results
of irreducible representation theory by a simple algebraic
approach. All quantities involved in the approach, projec-
tors and spinors, are members of the algebra. A projector
basis is obviously the basis appropriate to calculations in-
volving algebraic spinors.
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A relation between representation functions (RF’s) of positive discrete unitary irreducible
representations (UIR’s) of SU(1,1) and the RF’s of the UIR’s of SU(2) is given. The classical
vector model is worked out for the positive discrete UIR’s of SU(1,1). Classical domains,
probability densities, and algorithms for numerical computations of SU(1,1) RF’s and
Clebsch—Gordan coefficients are derived, in full analogy with the SU(2) case.

I. INTRODUCTION

The SU(1,1) group occurs in many areas of physics. For
example, it is locally isomorphic to the three-dimensional
Lorentz group SO(2,1); the so(2,1) Lie algebra is also rel-
evant for the hydrogen atom and the isotropic harmonic os-
cillator.’-2 The SU(1,1) symmetry is involved in recent pub-
lications concerning various subjects (see, e.g., Refs. 3-8):
path integration methods, coherent states, squeezed states,
laser—plasma scattering, spin wave in solid-state physics,
field theory, etc.

In the present paper we consider only positive discrete
unitary irreducible representations (UIR’s). The restriction
to unitary representations is necessary if a classical vector
model is used (the Hermitic generators then have real eigen-
values). Once a relation is obtained for positive discrete
UIR’s, the analogous relation for negative discrete UIR’s
follows easily. The continuous supplementary and principal
series of UIR’s are not considered here.

The SU(1,1) Clebsch—-Gordan (CG) coefficients (also
called Wigner coeflicients), associated to the coupling of
two discrete UIR’s of the same sign, are known to be related
to the SU(2) CG coefficients.®!! More precisely, these
SU(1,1) CG coefficients can be expressed as SU(2) CG co-
efficients, their arguments being given functions of those of
the SU(1,1) CG coefficients. These relations, which take
their simplest form when expressed in terms of 3/ coeffi-
cients, correspond® to symmetry properties of generalized
CG coefficients. Generalized CG coefficients were intro-
duced'*"? to take into account analyticity properties of the
CG coeflicients when their arguments move in the complex
plane.

To our knowledge, however, no such relations between
representation functions (RF’s) of SU(1,1) and RF’s of
SU(2) (also called rotation matrix elements) have been giv-
en up to now. The RF’s of SU(1,1) are known to be analyti-
cally related to RF’s of SU(2). Thus, otherwise stated, an
appropriate symmetry relation for generalized RF’s appears
to be still lacking in the literature.

In the first part of this paper, Sec. II, it is pointed out
that such a relation [see Eq. (23)] can easily be obtained
from the explicit expressions of the RF’s.

The vector model for SU(2) is extremely useful, for
both physical intuition and practical calculations.'*'? De-
spite the close interconnections between SU(1,1) and
SU(2) discussed above, it appears desirable to develop the
vector model for SU(1,1) independently of its relations to
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SU(2). This provides a direct and deeper insight into the
relation between the SU(1,1) discrete UIR’s and the classi-
cal vectors in three-dimensional space. The vector model for
SU(1,1) will be shown (Sec. IV) to provide suitable algor-
ithms for numerical computation of RF and CG coefficients
based on three term recursion relations (Sec. III), in full
analogy with previous works'®'? for SU(2). When only a
few SU(1,1) RF’s are needed, one can express them as
SU(2) RF’s and use the SU(2) algorithms. In physical ap-
plications involving the SU(1,1) symmetry, the simulta-
neous computation of a whole set of RF’s differing only by
one SU(1,1) argument is generally required. When a large
number of such SU(1,1) RF’s are needed, the SU(1,1) al-
gorithms presented below become very appropriate. Indeed
the SU(2) algorithms correspond to the simultaneous vari-
ation of several SU(1,1) RF arguments. The SU(1,1) algo-
rithms are, in fact, quite similar to the SU(2) ones. The main
differences occur in the values of the arguments of the coeffi-
cients involved in the three term recursion relation. For
SU(1,1) CG coefficients the SU(2) algorithms'® are direct-
ly appropriate since the variation of one SU(2) independent
argument also corresponds to the variation of only one
SU(1,1) independent argument in the three term recursion
relations considered.

Section III is devoted to the derivation of the recursion
relations needed in Sec. IV. There are several methods for
deriving these recursion relations. The methods presented
here avoid the use of explicit analytical expressions for RF
and CG coefficients. They start only from the defining com-
mutation relations for the Hermitic generators. They are ap-
propriate to both SU(2) and SU(1,1) cases. These methods
are not new, except the one given in Sec. III B 1. We believe
that it is useful to present a unified and direct way for deriv-
ing all these recursion relations, with a complete exposition
of the phase conventions.

In Sec. IV we present the vector model for SU(1,1). The
classical domains and probability are determined, as well as
the algorithm for numerical computation of SU(1,1) RF’s
and CG coefficients.

Il. SU(1,1) REPRESENTATION FUNCTIONS IN TERMS
OF SU(2) ROTATION MATRICES
A. Notation and definitions

The % and g denote diagonal matrices associated with
SU(2) and SU(1,1), respectively:
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R =p2=pB= _glle g2 B, (1)

The covariant components 4, g, corresponding to the in-
verse matrices are equal to the contravariant components
definedin Eq. (1). TheJ denote the generators of SU(2), the
K those of SU(1,1). Their commutation relations can be cast
into the form®®

(J 5] =i, (2)
Ji=h',=J, (3)
[KiK*] = —ie™K,, (4)
K'=¢'K,, (5)

where summation occurs for repeated covariant and contra-
variant indices, and both 77 and € denote the completely anti-
symmetric tensor (7'? = €'?*> = 1). Two different symbols
have been used since the covariant components of 7 are ob-
tained with the metric 4 whereas those of € are obtained with
the metric g. Here, J-J and K- K are the Casimir operators of
SU(2) and SU(1,1), respectively:

JI=J%, = (J") 4+ (I + (J3)?, (6)
KK=K*, = — (K" — (K> +(K**. (D
The orthonormal basis vectors of the UIR’s of SU(2) are

denoted by | j,m), j being a positive integer or half-integer;
m= —j, —j+ 1,..,j. We have

JJjmy =j(j+ D|jim), (8)

The orthonormal basis vectors of the positive discrete UIR’s
of SU(1,1) are denoted by |y,u), ¥ being a negative integer
or half-integer; u = — 7, — ¥ + 1,... up to infinity. [ The no-
tation {y,u) is used in place of |y,u) in order to avoid confu-
sion in Sec. ITII B 1.] We have

K-Kl|yp) =v(y+ Dlyw) , (10)

K|y = plya) - (1)
Defining

JE=J'1iJ?, (12)

K*=K'+iK?, (13)
one has, with the usual phase conventions,'

J = jymy =((j+m+DGFm) % jm+ 1)

=c(xmplim+1), (14)

Ktlyp)=(—(y+p+D@Fp) e+ 1)

=c(y, £+ 1), (15)
with
clay=((b+a+ 1)(b—a))'?
=cla,~b—1). (16)

The advantage of the above phase conventions for raising
and lowering operators is that both thed SU(2) RF’sand 6
SU(1,1) RPF’s defined below are real. The disadvantage is

that the action of K cannot be viewed as the analytic continu-
J

8L, (B =(cosh( B/2)) ' d ¥ EC YT 1 s uep - 1y (2arctan(sinh( 8/2))) .
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ation of the action of J, due to the minus sign inside the

square root of Eq. (15), or, equivalently, due to the inter-

change of the arguments of the function ¢ in Egs. (14) and

{15). When using the Euler angle parametrization, the RF’s

of SU(2) and SU(1,1) are given by

(j,m'|exp( — i’ J*)exp( — iBJ *)exp( — iaJ )| jm)
=exp( — i(a’'m’ + am))d’, . (B),

(ve'|lexp( — ia’K *Yexp( — iBK *)exp( — iaK *)|y,u)
=exp( — i(a'y’ + au))sy , (B) . (18)
A relation between the d and 6 RF’s will now be estab-

lished.

(17)

B. Relation between d and 5 RF’s

The phase conventions fixed by Egs. (14) and (15)
completely determine the matrices d and 8. Their explicit
expressions can be derived by several methods.'® For
m’ + m3>0, d can be expressed in terms of the hypergeome-
tric function: ’

(B
= [(—=1Y="/(m' + mN]((G+ m )N+ m)!
X((f—m)O(j—m))~ )2 sin¥( B/2)
Xeot™ *"( B/2) Fy\m' — jim —jim’ + m

+ 1; —cot’( B/2)). (19)
Similarly & can be expressed®*"?? as
0L (P
= (= D" + g — DY + )y + p)!
X(—74+4 =D —y+p—1Y)"'2
Xsinh®>"( B/2) tanW +#( B/2) ,F{ —u' — ¥,
—p—7— ' —p+ Leoth’( B/2)). (20)
One then uses the transformation
Kl —p' —v,—p—y — ' —u+ Licoth’( B/2))
=@ —-y—Dip—y—~1D!
X' +p— D=2y -1
XoFl—y =1, —v—u
—2¥;1 — coth?( B/2)). (2D

This transformation, which can be verified by express-
ing explicitly the hypergeometric functions in terms of poly-
nomials, is a particular case of a more general transforma-
tion valid for other values of the arguments.”® The last
argument of ,F, in the right-hand side of Eq. (21) is now
always negative, as in Eq. (19). A direct comparison be-
tween Eq. (19) and Eq. (20) can now be performed. Using
the relation'®

& (BY=(—1D"""d (B, (22)
one finally obtains

(23)
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ill. THREE TERM RECURSION RELATIONS FOR SU(1,1)
A. Recursion relations within a given UIR

Three term recursion relations within a given positive
discrete UIR are now obtained exactly as for SU(2).

1. Representation functions
For RF’s one starts from the following equality:
(1’ lexp( — iBK K> |y,p) = usl . (B) . (24)

Then, using the Baker—Campbell-Hausdorff relation and
Eq. (4), one obtains

exp( — iBK*)K?
= (K3cosh( B) + ((K * + K ~)/2)sinh( B))
xexp( —iBK?), (25)
and one easily obtains the recursion relation
8% (B — ' cosh( B))
= sinh( B)(c(y, — ")}, _ 1, (B)
+ e 1, (B2 (26)

The recursion relation for the SU(2) rotation matrix d is
obtained in a similar way and is

d’, .. (B)Ym—m' cos(B))
=sin( B) (c( — m’, )d%, _ 1, (B)
+e(m', j)dl, 1. (B2, (27)

2. Clebsch-Gordan coefficients

The SU(1,1) CG coefficients coupling two positive dis-
crete UIR’s are matrix elements of a unitary transformation
and therefore satisfy

[(Va¥e )V = D |VarkbasVookes ) (VastasVorkds |Vst2)

Kbty

(28)
[VartbasVootts) = D1 (Va¥o )Vl) (V| Vasta3Voskbs) 5
W (29)
> Vot [VastasVooths ) (Vaslba3Voslbs [Vilt) = 8,8,y
Moty
(30)
> VarktasVookts [Vl (Volt|VarkbaiViotts) =6, 8,
2 (31)
Vol VarttasVortts) = (VarkbasVosbts Vi)™ - (32)

The following relations are always implicit for the CG coeffi-
cients:

Ko+ 1y =1, Ya + V627
A three term recursion relation is most easily obtained from
the action of the operator K ~K *, with
t—Kx*+KjF, (33)
on Eq. (28).

A simple calculation leads to the recursion relation

#02_7/a’ lu'b>—yb’

2525 J. Math. Phys., Vol. 29, No. 12, December 1988

(P (V) = (Vartba) = C(Voobts)) VarkhasVosbes | Vi)
= c(Vartta )¢ Wostts — 1) (Vastha + Li¥potts — 1|7p2)
+ c(Vostts ) Vastta — 1)
X (Vartba — L¥potty + 1{poe) - (34)
In a similar way, one obtains, for SU(2),
(€ (m,j) — (my,j,) — My, Jo N JasMas Jpsy | jom)
=c(mg, j,)e(my, — 1, j,)
X Jasmg + 1;jysmy — 1| j,m)
+c(my, jy)c(m, — 1,j,)
X (Jasma — 1 jysmy + 1| jym) . (35)

B. Recursion relations between different UIR’s
1. Representation functions

Recursion relations for SU(2) RF’s involving different
values of j are most easily derived from the general relation'®
%, . (Bd%: (B

mp,my,
= Z <ja’m:z;jb’ml'> ’j’m,>
J

X(j’m|ja&ma§jb»mb)dj;n’,m(ﬁ) . (36)

Forj, =1, m;, = m, = 0, the above equation directly gives
a three term recursion relation for the SU(2) RF’s d where
only j varies, m’ and m being fixed. The analog of Eq. (36)
for SU(1,1),

Yo Vb
5#;,;tu( B )6ﬂ;ub( B
= Z(?’a,ﬂé;nyﬂi “/’:u,)
¥

X (Vtt|VartbasVoites )8}, (B (37)
however, does not lead to a three term recursion relation.
The reason is that y on the right-hand side of Eq. (37) varies
betwen the maximum value of —u', — g uptoy, + 7.

A method valid for both SU(2) and SU(1,1), which
avoids the use of the CG coefficients, is now described. The

starting point is the bosonic realization of both SU(2) and
SU(1,1),*

[apa,] =[aa,] =1, (38)

all other commutators being equal to zero. Here @ is the
annihilation operator. Its adjoint is the creation operator a.
One has

J? = (a,a, — a,a,)/2, (39)
Jt =aa,, (40)
J~ =a,a,, (41)
K*=(a,a,+3,a,)/2, (42)
K*=aa,, (43)
K~ =a,a, (44)
| jm) = ((j+ m)\(j— m))~2a{*™aj—™0) . (45)
It follows that

K3 jm) = (j+Dlim), (46)
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K*jm)=((j+14+m)(j+1—m))"?
X|j+ 1,m), (47)
K~ jm) =((j+m)(j—m)"?j— Lm). (48)

From now on, it is supposed that m is negative or zero, and
that ¥, u are associated toj and m according to the involutive
transformation

y=m-—} p=j+}. (49)
Thus Eq. (45) can equivalently be rewritten as
Lm) = ((y +p)u —y — D)~
Xaltray =~ N0 =|vu) . (50)

The SU(1,1) recursion relation is finally obtained by evalu-
ating the following matrix elements, denoted by 4 and B:

A=(yp'|J " exp( — iBK*)J "~ |yu) , (51)

B=(yp'|J ~ exp( —iBK )T *|yu) . (52)
A direct evaluation yields

A=y =)y +p)y—m)(r+w)) 8B .

(53)

The evaluation of the two commutators
[K3L,J*] =i(aa, +8,8,)/2, (54)
[sz[Kz9J+]]= '_J+’ (55)

allows one to use the Baker—Campbell-Hausdorff relation
and to obtain

exp(iBK 3)J * exp( — iBK?)
= cosh( B} J * —sinh( B)(a,a, + 8.3,)/2 .
Using the additional relations

aaly— L) =(r+p+1)@+w)?rp+1),
(57)

(56)

one obtains

= — (y—p)(y +p)cosh( B4, (B)
—sinh( B (— (y —@)(r + )" 2y +p+ 1)
X (}’+#))x/25;};’,p+ (B + (-

Xp—y—D)"8 ,_(B)2. (59)

Following a procedure analogous to the one above, one ob-
tains

B=((y+1—-pY(y+1+p)Xyr+1—-p)

X (¥ +14+p)' 285 (B, (60)
B= —(y+1—=u)(y+1+p)cosh( B3, . (B)

—sinh(B)(— (y+ 1 =@y (¥ + 1+ )2

X (=M (=7 — 1), 1 (B)

(Y + 1+ ) (y+w)) 28, (B2 (61)

Finally the desired recursion relation is obtained by evaluat-
ing A /y + B/(y + 1) and using Eq. (26) together with the
symmetry property

8., (B=8,(-8. (62)
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The result is

(=) Y+ =)+ /8B
+{r+1=p)y+ 14+ My +1—p)
X+ 14+m)"/ (y + )MELLYB)

= Qy+ 1D (—cosh(B) +pp'/(v(y + DNEL (B .
(63)

A similar method yields, for SU(2),
{(G—mYG+m Y —m)(G+m)/ jdis L (B)
+{(J+1=—m)(+14+m)(j+1—m)
X+ 1+m) 2/ +10)d5E0 (B
= (Y + 1) (cos( B) — mm'/(j(j+ D)d, . (B) .
(64)
2. Clebsch~Gordan coefficients

The method presently used is the analog of the well-
known method for SU(2) based on the concept of vector
operators (see, e.g., Refs. 1 and 25). Therefore it is only
briefly outlined here. We define an SU(1,1) vector operator
V as a set of three operators ¥/ satisfying the following com-
mutation rules:

[KVE] = —ie™Y, . (65)
Defining
VE=V'4iv?, (66)
one obtains, from Egs. (4) and (13),
[K*VF]=F203, (67)
K’ V] =4VE, (68)
[K*V]=FVr=*, (69)
[K* V=K,V ]=[K/V]=0, (70)
K-V=KV,=VK, (71
[K-V,K]=0. (72)

From Eqs. (70) and (68), one obtains selection rules rela-
tive to p:

(7/’/"'1 V3|y,/1) =0, ifu'#u,

YV Eyp) =0, if p#utl.
We now define a vector product rule for two SU(1,1) vector
operators 4 and B:

(AANBY = —€/,A*B". (75)

It is easy to verify that if 4 and B are SU(1,1) vector opera-
tors, then A A B is also a SU(1,1) vector operator. One also
verifies that

(73)
(74)

[K/(ANB)*] =i(4’'B*— A *B)), (76)
[K-KV] =i(VAK—KAV), an
[K-KKANV]=2(K-K)V— (K-V)K), (78)
[K-K,VAK ] =2i(— V(K-K) + (K- )K), (79)

[K-K[K-KV]]=2V(K-K)—-2K-NK+ (K-K)V).
(80)

Taking the matrix elements of the last equation, one obtains
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(V==Y +y+ 12 = 1)LV
= —4(Y (K- VK |yu)

= -4V MIIN LK |rp), (81)

where the last equation results from the fact that X- ¥ com-
mutes with the K7, i.e., K-V is an SU(1,1) scalar operator.
From the above equation, one easily deduces the following
selection rules:

&Ny =0, if y=—1, (82)
(Y.u'\V]|yu) =0, if ¥ — yisdifferent from 1,0, — 1.
(83)

The three terms recursion relation is now derived from the
action of K3 on a coupled state, expressed in two different
ways:

K| (Vo)) = 3 BalVarkbasVotto) (VasthasVostbs |V1d)

Mty

= Y |VatbasVorlts) (Vaslba;Vosbts |V o1t)

bty V'

X((?’a?’b)riﬂle|(ya7/b)7/uu)' (84)

From now on, the symbols (¥,%,) will be dropped for the
sake of clarity. In the above relation, ¢ takes the values
y— 1, % ¥+ 1, since K, is an SU(1,1) vector operator. A
three term recursion follows:

#a (Ya ’)ua ;7[; !ﬂb l}’,,u)

= ;(n,ua;n,ublr,ﬂ)(V,ﬂlKilm) . (85)

It remains to evaluate the matrix elements of X ? in the above
equation. For the case ¥ = ¥, Eq. (80) gives
(rulK 2 |vm)
=plyr+D+7v.(va+ D =7, + 1)
XQ2r(y+ D))" (86)

For the general case, one deduces from Egs. (70) that the 1
dependence of the matrix elements of ¥~ can be factorized
as follows:

(V" + D =clr) IV 1Y), (87)
(V7 ly—Lp+1)
=((y—1-@r—-w)"*HV-llr-0,  (88)
(relV -y + 1+ 1)
=((r+1+r+p+)?MVlr+ 1.
(89)

The above relations define the reduced matrix elements and
up to now one has no relation between (¥||V ~||¥ — 1) and
(y — 1}|F~||»). Using Eq. (67), one obtains

(V3 yp) =pIV-Iv), (90)
(v V3|y — L)
=(—(r—w)¥+)"*HV-llr-n, (91)

(rpe|V3y + Lp)
=(—(+ 1=+ 1+p)?HVlly+ 1.
(92)
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Now V? is supposed Hermitic. From Egs. (91) and (92), it
follows that

AV lly=D=w-1YV|n*. (93)

By evaluating the matrix elements of the commutator be-
tween K . and K 2, one obtains

Ky
=K INP+ (=2 + DK Iy — DJ?

+ @+ )IK S Nly+ DJ? (94)
or, using Egs. (86) and (90),
(=2v+ DK ly — DI?
+ Qr+ )Ly + DI
= [(r(r + D) = pl/ 2y (¥ + DY, (95)
where
P=(r.(Ya + 1) — ¥, (3, + D). (96)
Taking the matrix element of the relation
K, K,=K K, —(K}K; +K;K})/2, (97)
one obtains
=29 |IK S lly—DJ?
—(r+ DY+ )|WIK ly+ DJ?
=[Rgr(r+ D) —p—(r(y + DFV/4y(r + 1),
(98)
where
=Y. Vo + D+ vy, + 1) 99)
Finally, from Eqgs. (95) and (98), one obtains
MK lly=1)
=+ (¥ = Ve = 7))
X(r = (a + 76 + DNV 2y (47 — 1))
(100)

The phase convention chosen in the Appendix requires that
the sign + should be retained on the right-hand side of the
above equation, as ¥ is negative. To summarize, the recur-
sion relation is

YAWY + 1) (Varlko;Voths |Y + 1,2)
+ B(Y) (Vastba3Vstbs |Vot2)

+ (¥ + DAW) (VastbasVestts |y — L) =0, (101)

where

AN =[((N? = Fa — )N T +7) + D= (1)}

X((7)? = W)V @4)?*—1)]'? (102)
and
BN={ro(va+ 1) =¥ (7, + Du
+y(r+ D@y —p)] - (103)

Within the usual phase conventions for SU(2) (see, e.g.,
Ref. 26), the SU(2) recursion relation is obtained from the
one of SU(1,1) by the replacement of ¥, i by j, m.
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IV. VECTOR MODEL FOR SU(1,1)

A direct orthonormal system of axes labeled by X !, X2,
X 3 with origin O is shown in Fig. 1. In full analogy with the
SU(2) case, one associates with a given state |y,u) a set of
three-dimensional vectors in Euclidean space as follows (re-
member that only positive discrete UIR’s are considered,
and therefore the x* components are positive). Equations
(7) and (10) define a hyperboloid with rotational symmetry
axis X *if y(y + 1) is positive, i.e., if y is less than — 1. The
minimum distance of this hyperboloid to the origin O is
equal to (y(y¥ + 1))"/?, to be denoted by I'" from now on.
Thus Egs. (7) and (10) determine the whole set of vectors of
origin O, the extremities of which are on the hyperboloid
characterized by I'. Equation (11) selects among these vec-
tors those for which the projections on the X * axis are equal
to uu. The latter vectors are assumed to be equiprobable as no
more eigenvalues characterize the state |y,u). The cases
= — 1 and — } correspond to different geometrical pic-
tures. For ¥ = — 1, the hyperboloid becomes a cone. For
y = — J, the figure is generated by rotating around the X
axis the hyperbola (x*)> — (x')? = — 0.25. The results ob-
tained from now on can be extended for these particular
geometries.

A. Classical domains and algorithms for RF's

In the Lie algebra of the group SO(2,1), K ? has the
expression
, J d
K2= ( 3_____+xl___)’
"o ox*
or, by using the parametric equation for the hyperboloid,

(104)

x! = ((I)? + (x*?)?sinh (1) , (105)

x> =((I")? + (x*)%)"/? cosh(t) , (106)
. d

K?=i—~, 107
Yat oo

A point on the hyperboloid T is thus determined by x> and .
Thus, for these points, the pseudo rotation operator has the
following action in the configuration space:

(D%t |exp( — iBK )| ¥) = W(Dx%t+8) . (108)

Otherwise stated, the operator exp( — iBK?) acts on the
state | ¥) by transforming the points characterized by r into

FIG. 1. Hyperboloid associated with a positive discrete UIR. The vectors
with origin O and extremities on the horizontal circle characterized by
X3 = p are associated to the state |y,u). After the action of the operator
exp( — iBK %), these vectors remain on the hyperboloid, but the plane devel-
oped by their extremities is no longer horizontal. {See text.)
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the points characterized by ¢ — . Starting from an initial
configuration associated with the state |y,u), i.e., from the
vectors whose extremities have for coordinates

x'={(g+T)u —-T))"cos(p)=Acos(g), (109)
¥ =((p+ D) =)' sin(g) =Asin(p) , (110)
(1n

with a uniform probability density in ¢ between 0 and 27,
one obtains as a final configuration a set of vectors whose
extremities have, for coordinates relative to the third axis,

x? = ((I')? + (x*)?)"? cosh(t — B)
= x° cosh( B) — x'sinh( B) . (112)

The plane determined by the horizontal circle in Fig. 1 is
thus rotated along the X? axis. The rotation angle is
arctan(tanh( B)). It is clear from Eq. (112) that x* is extre-
mum when x' is extremum (@ = 0,7). The classical domain
for u' is therefore determined, for 8> 0, by

p cosh( B) — ((u)* — (¥ + 1))"/?sinh( B)
<p’ <p cosh( B) + ((u)* — y(y + 1))/* sinh( B) .
(113)

3
X’=pu,

For SU(2), the same inequalities hold with the replacements
¥ —J, u—m, cosh - cos, sinh —sin, and the change of sign in
the square root arguments. From Eq, (112) itis seenthaty’
is a uniform function of ¢ in the interval (0,7). The classical
probability density f{u') is then obtained according to the
relation

f)hdy =dp /. (114)

The result is

f@) = Um{— @) — (u)’ —y(y+ 1) sinh’*( B)
+ 2uu’cosh( B))/?] . (11%)

Numerical stability for the three term recursion relations
can only be a priori expected if the recursive evaluation pro-
ceeds from the classically forbidden region towards the clas-
sically allowed region.'® The full domain of variation for i’ is
between — y and infinity. For ' = — ¢, Eq. (26) becomes
a two term recursion relation. Therefore one starting value
must be given, and is obtained from Eq. (20):

8 L (B)=((p—y— DYy +mi(—2y—DPHY?
Xsinh?*#( B/2)cosh” #( B/2) . (116)

The recursion relation (26) is then used with increasing p'
values, provided u’ does not exceed the maximum classical
value [Eq. (113)]. For u’ greater than this value, the recur-
sion relation (26) must be used in the opposite direction, i.e.,
for decreasing p’ values. The problem now arises of how to
initiate the recursion. The solution we propose is to use the
relation (23) between SU(1,1) and SU(2) RF’s. Indeed the
full variation range of m’ is bound from — jtoj. The recur-
sion relation (27) becomes a two term recursion relation for
these extermal values of m’. A recursion towards the classi-
cal SU(2) domain can therefore be made starting from the
initial values
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d_ . (B) = (2O +mI(—m)'?
Xcos/ ="M B/2)sin M B/2), (117)
di. (B) = (= 1Y""(2H((G+ m)(j—m)'7?
Xcos/ (B /2)sin/ ~"( B/2) . (118)

In fact these initial values are not even necessary. One can
start the recursion (27) with arbitrary nonzero values and
one matches the results inside the classical domain. The uni-
tarity condition then provides the normalization. Thus only
a phase must be specified. It is seen from Eq. (117) that the
phase for m’' = — j and 8 between O and 7 is 1. Using the
relation (23) for two successive values of u', the recursion
relation (26) can therefore be initiated for decreasing values
of i’. The determination of classical domains is particularly
important for noncompact groups having infinite-dimen-
sional UIR’s. It provides a criterion for truncating infinite
sums in practical calculations, as can be seen the following
example:

exp( — iBK*}|y,u) = Y SL.(Blrw).
po=—y
The square modulus of § is reported in Fig. 2 for the case
y = —2,u =150, and 8 = 0.5 radian. It is seen that outside
the classical domain, the decrease of the square modulus of §
is very rapid. A numerical test is provided by the unitarity
condition

(119)

o0

S 18 (BP=1.

¢

p=—y
When the summation over u' is restricted to the classical
domain, the result is 0.96. When the summation is limited
between u' =20 and u' = 100, the result is already
0.999 999 9997.

Alternatively, a classical domain for ¥ can be deter-
mined from Eq. (113):

Y(r+ 1) <(2up’ cosh( B) — (u)? — (u')*)/(sinh*( B)) .
(121)

The recursion relation (63) therefore must be used in the

(120)

§ 2
T P G )l |
| x
o.06 | ! ‘
| |
! 1
| [
0.04 ;
|
|
0.02 t
M
.00 4 L ‘
20 40 60 80 100

FIG. 2. Square modulus of the § RF’s as a function of ¢’ for y= ~ 2,
# =50, and f = 0.5. (Seetext.) The values are joined by straight lines. The
vertical dashed lines correspond to the limits of the classical domain. The
dashed line curve inside the classical domain represents the classical proba-
bility density.
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direction of increasing values of ¥. For ¥ minimum this re-
cursion relation becomes a two term recursion relation. It
can be initiated as before using the relation (23) between
SU(2) and SU(1,1) RF’s. It can also be initiated from the
explicit expression [see Eq. (20)]

Sl (BY = ((u+p — DY ((u—p) 2 — DN
Xsinh* ~#'( B/2)cosh~#*~#(B/2), (122)
6-6(8)
= (— D* #((u+p' — DU —p)t2u — DHIP'?
X sinh®* ~#“( B/2)cosh~#~#(B/2). (123)

The rapid decrease of RF’s when entering the classically for-
bidden domain is illustrated in Fig. 3 for a particular case.

B. Classical domains and algorithms for CG coefficients

One first considers ¥, it ,,,7, 44 all fixed and one seeks
the classical domain for y. To the relation K = K, + K, cor-
responds the diagram of Fig. 4, where 0,0, represents a
vector associated to |y,.1, ). The azimuthal angle of 0,0,
has been taken arbitrarily equal to zero because of rotational
invariance along the third axis. The third coordinate of O, is
equal to i, . To the state |y, ,u, ) are associated the classical
vectors O, M, where M is on the inner hyperboloid, and the
component of O, M along the third axis is equal to i,,. The
set of the points M describe the horizontal circle in Fig. 4,
corresponding to a 27 variation of the azimuthal angle ¢’ of
O, M. The classical domain for y is determined by the condi-
tion that M belongs to an hyperboloid with rotational sym-
metry axis OX >. This condition yields

Y+ D=()?= (g, +4,)* — (8, + 4, cos(p"))
— (A,)?sin?(p")
=([,)*+(T,)?
+ 2 p, — AL A, cos(@ ). (124)

From the above equation the classical domain for I is deter-
mined by the following inequalities:

!
S%00.5.60.5¢ 3) |
|
0.09 -
0.00 ’(4
-0,03
[
' ¥
-0. 10 It o} i §
-60.3 ~-40.5 -20.5 ~0.3

FIG. 3. The § RF’s as a function of y for ;' = 100.5, y = 80.5, and B = 3.
The classical domain is at the right of the vertical dashed line.
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FIG. 4. Diagram corresponding to coupling of two positive discrete UIR’s.
(See text.)

(Fa )2 + (Fb )2 + 2(,Ura,urb - AaAb)
< (D)< (L) + (T)? 4 2(uaps + AA,) . (125)

From Eq. (124) itis seen that yis a uniform function of ¢ ' in
the interval (0,7). The classical probability density f(y) is
then determined as previously from the uniform probability
density of @ ':

Sy = — (r + )/[7((T,T)? — (1, T,)?

- (:u'arb)2 - E2 + 2/.La/.th)]/2] s

E=((T')* — (T,)* — (T,)?)/2.
Alternatively, Eq. (125) can be used to determine the classi-
cal domain for u, for fixed values of ¥, 7., 7,, and u:

(126)

X—Y<p,<X+7Y, (127)
with
X=(u{(D)? + (T,)* = (T,)/2)/(T)?, (128)
Y=A[(((T)? + (T,)% — (,))/2)?
— (TT,)?]"2/(1)?. (129)

Since the square modulus of a CG coefficient may be inter-
preted either as the probability to find the value y for all
other independent arguments fixed or as the probability to
find the value p, for all other independent arguments fixed,
the classical probability density f(u,) is also given by the
right-hand side of Eq. (126).

The algorithms for the computation of SU(1,1) coeffi-
cients within a given UIR are now easily derived from the
recursion relation (34) and the corresponding classical do-
main defined by the inequalities (127). For a recursion
between different UIR’s, the algorithms are derived from the
recursion relation (101) and the corresponding classical do-
main (125). In both cases the full domain of variation is
bound and the recursion relations become two term recur-
sion relations at its limits. The unitarity conditions [Egs.
(30) and (31)] provide the normalization. The method has
been exposed in detail for the SU(2) case in Ref. 18 and will
not be repeated here. We only give the necessary phases ac-
cording to the convention used in the present work:

phase((¥., — Va Voo |[7)) =1, (130)

phase((V,uha;Votls| — ps)) = (— D)7 # 0 (131)

It can be seen that the above algorithms exactly correspond,
in fact, to the SU(2) algorithms.!® Indeed a comparison
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between the explicit expression given in the Appendix [Eq.
(A11)] and the one given in Ref. 26 gives'®

)Ya+:ua

(Ya’l‘a;},b’#b|7/’/“)( - 1 = <ja’ma;jb’mb[i’m) ’

Jao= e+t — Vs +7a —1)/2,

Jo=We + 1y —Va+¥s —1)/2,

m, =(,u'b ~ Mg — Vo —Ya —'1)/2’

my,= (s —fy —¥p —Va — 1)/2,

j=—-v—1.
From the above equations one observes that the variation of j
for all other SU(2) arguments fixed also corresponds to the
variation of ¢ for all other SU(1,1) arguments fixed. Similar-
ly, the variation of m, for m, j, j,, andj, fixed corresponds
to the variation of 1, for u, 7, ¥,, and ¥, fixed. Therefore the
computation of a whole set of SU(2) CG coefficients for
successive values of j or m, by means of the SU(2) algo-
rithms described in Ref. 18 directly provides the values of a
whole set of SU(1,1) CG coefficients for successive values of
y or u, according to the correspondence given by the Eqs.
(132). It can also be verified that, within this correspon-
dence, the classical SU(1,1) probability density given by Eq.
(126) is the classical SU(2) probability density.'*'*>'* The
behavior of CG coefficients inside and outside the classical
domain isillustrated in Refs. 18 and 19, together with a com-
parison with the classical probability density.

(132)

V. CONCLUDING REMARKS

Symmetry properties of generalized CG coefficients or
of RF’s, or equivalently relations between SU(1,1) and
SU(2) CG coefficients or RF’s, allow one to interpret some
special properties by group theory. For example, the orthog-
onality property of & (see Ref. 21) can be expressed by using
Eq. (23) as

T B) . . 6mm'
dp tan| — |d’ I = ,
J(; B an(z m,m+k(B)d"I,m +k(B) Im+ k
(133)

for 2m + k and 2m’ + k positive.

The latter relation seems difficult to explain only from
the SU(2) group theoretical point of view.

Except in Sec. I, all the results have been obtained start-
ing from the defining commutation relations for the Hermi-
tic generators, for both SU(2) and SU(1,1). A more eco-
nomical way would be to derive directly the SU(1,1) results
by analytic continuation of the SU(2) results. We believe
that the direct approach that has been used is also instruc-
tive.

Finally we emphasize the importance of the existence of
a classical domain in the infinite-dimensional case. This al-
lows one to see how an infinite expansion can be truncated in
practical calculations. The § RF occurs in the radial matrix
elements of the Coulomb problem, and in the matrix ele-
ments between different Sturmian bases.'?> An approximate
residual O(4) symmetry has been found for diexcited two
electron atoms.?”?® It would be of great interest to know if
this could be generalized to include states of different ener-
gies within the framework of an 0(4,2) noninvariance alge-
bra. 1,2,29
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Note added in proof: We have recently learned that the
relation between SU(1,1) RF’s and SU(2) RF’s [Eq. (23)
of the present paper] was previously discovered by A. M.
Perelomov, Rep. Math. Phys. 2, 277 (1971), within differ-
ent phase conventions.
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APPENDIX: PHASE CONVENTIONS FOR SU(1,1) CG
COEFFICIENTS

The procedure briefly described now closely follows the
one given in Ref. 26 for SU(2) CG coeflicients. The first
convention is given by

[(Va¥6)Va + Vor — Vo — Vo) = [Var — YasVer — V) -

(AD)

[The symbols (¥,7,) will be dropped in the following for
the sake of simplicity.] Equation (70) gives

(v + YK *yp) (] K Y — 1)
— (ru+ UK |V ) (VKT |y —1)=0.
(A2)

Since the matrix elements of K * in the above equation are
positive [see Eq. (15) ], it follows that the matrix elements of
K ;- between states of given y and ¢’ have the same phase.
Now, Eq. (69) gives

(e + 1KZly + L+ D
= (c(y) (v K3y + 1)
+ (rp+ UKy + L)) ey + L),
(v, —vIKily+ 1L, -7

= —VIKS v+ L, —v—D/c(y+1,—y—1).
(A4)
The two above equations show that the nondiagonal matrix
elements of K2 have the same phase as those of K ;.

The following phase convention can therefore be cho-
1

(A3)

(7/a ’:ua;yb’:u’b |'}/,/.t)

sen: all the matrix elements of K } nondiagonal in y are real
and nonpositive.

The consequences of this convention on the phase of
certain CG coefficients are now considered. Operating with
K * or K ~ on Eq. (28) gives

c(¥opt = 1) (VastbasVostbs Vot £ 1)
=¢(¥ar £ (o F ) Wastta F Li¥Vootts |Vi1t)

+ (Vo £ (s F 1)) (VaskbasVortts F 17pe) -
(A5)

In particular, the action of X ~ in the case u = — ¥ shows
that the signs of these CG coefficients alternate with u, :

phase((¥, 4.5V sokts | Vs — 7))

= (— 1)"" " phase((V,, — Vas¥sstts|¥> — 7)) - (A6)
Equation (69) gives

0>(y+1,—y—1K " [y+1,—-7)
X+ 1,—-7Klr,—»
=(y+L—-y—1K7|y,—7)

= z (7’+ 1’ i S 1|7/a’:ua;7/b’.ub)

Mty
X Vartta| K & Vastta + 1D (Yartba + L¥ols |V — 7)) -
(A7)
Using Eq. (A6), one obtains
phase((y + 1, — ¥ — 1|70, — ¥ai7ootts))
X phase((Va, — Va3¥ssts |V, — 1)) > 0. (A8)

According to the first convention [Eq. (A1) ], it follows that

phase((ya,_Ya;yb,ﬂblys —7’))= 1 » (A9)
for any allowed value of y. Finally Eq. (AS) yields, in the
case i, = — ¥a»

(V) (Var — YasVoolks | Vott + 1)

=c(Vostbs — 1) (Var — VasVorlks — 1|1:12) .
Therefore

phase((¥,, — Vas¥ests [ 8)) = 1.

The phase conventions of the present paper agree with the
explicit expression given by Sannikov®’:

(A10)

=[(=2r=D(=7=Va=V =D =V—VYo+ 7, = D =¥+7.—y, — D!
X (=74 Ve + V)0 + Vs + ¥ o — Vo — DUty + 91ty ~ ¥, — DY (—y — DI

xS

(=1)*
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Nowadays, (3 + 2)-de Sitter (or anti-de Sitter space) appears as a very attractive possibility at
several levels of theoretical physics. The Wigner definition of an elementary system as
associated to a unitary irreducible representation of the Poincaré group may be extended to the

de Sitter group SO(3,2) [or SO(3,2) ] without great difficulty. The constant curvature, as
small as it can be, is a natural candidate to play the role of a regularization parameter with
respect to the flat-space limit. Massless particles in (3 4 2)-de Sitter theory are composite
(singletons). On the other hand, supergravity theories necessitate a (large) constant
curvature. The content of this paper is group theoretical. It attempts to continue the “a la
Wigner” program for SO(3,2), already largely broached by Fronsdal. Three recurrence
formulas are presented. They permit one to build up the carrier states for representations with
arbitrary integral spin. Two of them are valid for the “massive” representations whereas the
third one is applicable to the indecomposable massless representations. In addition, other
presumably indecomposable, though nonphysical, representations are studied, in relation to
the existence of “generalized” gauge fields and divergences. The recurrence formulas also
allow one to build up the invariant two-point functions or homogeneous propagators. Hence it
becomes possible to examine the problems of light-cone propagation and “reverberation” into
the light cone and to make the following assertion: for a certain choice of the gauge-fixing
parameters, the massless states with arbitrary spin propagate only on the light cone and
whatever gauge one chooses their physical parts propagate on the light cone.

I. INTRODUCTION

As Galilean relativity appears to be the limitc— + o0 of
Poincaré relativity, the latter can be considered as the ide-
alistic “flat” limit p—0 of two possible curved-space-time
relativities of maximal symmetry. Indeed, a four-dimension-
al (pseudo-) Riemanian space may admit a continuous
group of isometry (i.e., preserving the metric g,,, ) with up to
ten essential parameters. The maximum number is realized
only for a space of constant curvature p, the curvature tensor
then reading

R;tv/lp = p(g,uigvp - gupgv/l )'

Those space-times that go to the flat Minkowski space
as the curvature p tends to zero are the ordinary de Sitter
spaces, of which there are two. The first one admits SO(4,1)
as a group of motions. It is essentially finite in extension':
given any point P and any timelike direction in that point,
the geodesics through P perpendicular to the chosen timelike
direction are finite. On the other hand, the second one, com-
monly called anti-de Sitter space or (3 + 2)-de Sitter space,
is infinite in extension; analogous geodesics have infinite
lengths and are completely spacelike. Its group of motion is
SO(3,2). The time is proportional to the rotation parameter
associated with the subgroup SO(2). If this periodicity is
seen as a difficulty, it is easy to circumvent it by dealing with
the covering space, of motion group SO(3,2) : then the time
is not bounded. As the Minkowski flat space-time is the limit
p—0 of the ordinary de Sitter space-times, the Poincaré
group, namely Lorentz &7, can be seen as a contraction of
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SO(4,1) or SO(3,2). However, compared to the Galilean
contraction of the Poincaré group, nothing, from a strict
operational point of view, can be asserted about the de Sit-
ter—-Minkowski relationship. The former expresses in math-
ematical terms the historical emergence of a new physical
theory supplanting the old one, relegated to the rank of an
approximate, although honorable, framework. This process
has been maturing for a long time through the experimental
practice of the physicists. It is firmly supported by more and
more precise measurements of what has acquired the re-
spectable status of the “universal physical constant c.”? No
such accomplishment presently exists for the curvature pa-
rameter p or, equivalently, the Einstein cosmological con-
stant A (it is not difficult to show the relationship
|A| = 3|p|). Upper bounds can only be given for the value of
[Al, these estimates being based on its relationship® with the
stress-energy tensor 7 (™ associated with the vacuum
{“vacuum polarization”),

T = — (A/4m)g,,.

One can place the limit |A| ~ 107% cm ™2 on the cosmologi-
cal constant. This number is negligibly small. But no sound
argument allows us to state that the cosmological constant is
zero.

On the other hand, a reasonably speculative attitude is
to consider p as associated to a new degree of freedom, in the
sense given by Fronsdal in 1965% “A physical theory that
treats space-time as Minskovskian flat must be obtainable as
a well-defined limit of a more general theory, for which the
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assumption of flatness is not essential.”

Interest in constant curvature is thus not purely gratui-
tous: a legitimate curiosity presses mathematical physicists
to continuously deform commonly accepted structures and
analyze what ensues in all its physical implications. How-
ever, deforming in this manner the Poincaré group towards
the (4 + 1)-de Sitter group causes some bothersome, even
unacceptable, features to appear: finiteness in extension, al-
ready mentioned,' nonexistence of a lower bound for the
energy spectrum,’ and absence of microcausality in a quan-
tum field theory.® By contrast, the opposite choice does not
disturb too much the canons of physics. Besides those geo-
metrical aspects of the (3 + 2)-de Sitter space favored by
Wigner, a causal structure exists, discovered by Castell.”
There also exists a set of unitary irreducible representations
of SO(3,2) to which elementary particles can be associated:
for each of them, the spectrum of the Hamiltonian has a
minimum, and the subspace of states having this minimal
energy as an eigenvalue carries a well-defined angular mo-
mentum, which allows a natural definition of the spin. A
reformulation of the Wigner program for elementary sys-
tems®!° can therefore be launched within the (3 + 2)-de
Sitter framework. A large part of this task, including quanti-
zation of free fields, has been accomplished by Fronsdal and
his collaborators throughout a series of comprehensive pa-
pers,* where they have successively treated the spinless rep-
resentations,'" the free Dirac fields,'? and the massless inte-
gral-spin or half-integer-spin fields.”> In particular, the
concept of masslessness on (3 + 2)-de Sitter space is now
firmly established by controlling the validity of several crite-
ria like conformal extension and Poincaré contraction'* and
gauge structure and light-cone propagation.'>'6 A feature of
considerable interest is also the composite nature of the
massless particles in (3 + 2)-de Sitter space. At the lower
bound of unitarity two representations discovered by Dirac
take place'”: the spinless “Rac” and the spin-} “Di.” The
nonobservability of these “singletons” holds for purely kine-
matical reasons. Furthermore, their remarkable role as con-
stituents of massless particles was proved by Flato and
Fronsdal'® through the tensor reduction

singleton ® singleton = & massless particles,

an equation that loses any sort of meaning in the flat-space
limit.

The (3 + 2)-de Sitter space is endowed with other ad-
vantages. For instance, the curvature p implies a sort of uni-
versal confinement for free particles, well put in evidence by
examining the “nonrelativistic” contraction of SO(3,2),'%%
obtained through rescaling p—pc ™2, and going to the limit
¢— + . An intermediate group is obtained, describing a
world with finite curvature but infinitely fast signal propaga-
tion. The one-particle representative Hamiltonian is then
given by

H=p*/2m + (m/2)pq*.

Here p appears as an external-harmonic-oscillator coupling
constant, responsible for the discretization of the free-parti-
cle energy. The same procedure applied to SO(4,1) yields an
opposite sign and explains the nonexistence of a lower bound
for the energy spectrum. Regularization of the infrared re-
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gion of (3 + 2)-de Sitter covariant field theories by the in-
troduction of a small but nonzero constant curvature hence
becomes a very interesting opportunity.

It was tempting to exploit this idea of geometrical con-
finement at a totally different order of magnitude. Salam and
Strathdee®' proposed the closed SO(3,2) symmetric de Sit-
ter universe as the best candidate for strong curvature. For
instance, a model of hadrons, in which quarks, antiquarks,
and gluons move inside a “finite spherical” and strongly
curved anti-de Sitter universe, is discussed by van Beveren,
Dullemond, and Rijken in a series of papers quoted in Ref.
22.

Motivation for (3 + 2)-de Sitter space is also provided
by its appearance in the maximally supersymmetric classical
solutions of supergravity theories.”***

Some interpretative difficulties subsist, however. What
is the effect of the information (Cauchy data) entering and
leaving the space-time through its timelike spatial infinity,
even though a consistent quantization scheme has been de-
vised by Avis, Isham, and Storey>*? The loss of the concept
of helicity for massless fields on (3 4 2)-de Sitter space, in
spite of the existence of two independent Gupta—Bleuler tri-
plets, merits more research by carefully examining the flat-
space limit.'* Besides, this problem is intimately connected
to the previous one and to the question of separate domains
of self-adjointness for the corresponding Hamiltonians.

This paper attempts to tell more about the (3 + 2)-de
Sitter theory. Its content is mainly group-theoretical and
answers several technical questions like explicit construc-
tion of states and related homogeneous propagators for arbi-
trary integral-spin representations. In particular, a demon-
stration is given for the light-cone propagation of the
massless fields, completing the Appendix of Ref. 16. The
methods are mostly inductive. Their field of application is
large enough to include some of the nonunitary and/or inde-
composable representations. One thus achieves a better un-
derstanding of the place occupied by the “physical sector”
within a large set of de Sitter representations.

The organization of this paper is as follows. In Sec. 11,
we briefly review the definitions and properties of the
(3 + 2)-de Sitter space, its motion group, and the represen-
tations of the latter that are physically interesting. Two re-
currence formulas are given in Sec. III. They permit one to
give the general solutions of wave equations and hence the
associated representation spaces. The massless case is, how-
ever, excluded.

The possible occurrence of invariant subspaces of solu-
tions naturally leads to the Weyl equivalence between group
representations, a concept explained in Sec. IV. These solu-
tions have the general form

k = '@!,sg

and are called “generalized gauge fields.” Here, { is a tensor
of rank s whereas k is of rank s'>s; Z is a differential
operator of order s’ — s. Its definition, some of its remark-
able properties, and its explicit expression are listed in Sec.
V.

In Sec. VI, the Weyl equivalence, and the operator &%
and its “dual” Z*, are shown to be the cornerstones for the
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construction of certain possible indecomposable representa-
tions of the (3 + 2)-de Sitter group. Also 7%, is a differen-
tial operator of order s" — s and generalizes the divergence.
Together with & , it realizes a factorization of central ele-
ments of the enveloping algebra:

s —s

'@:s'gr,sé‘m H (Q—’li)é-’

i=1

where Q is the second-order Casimir operator. The lowest
case, i.e, s’ =5 + 1, is precisely the massless case. Herein,
7, ,and Z ¥, are, respectively, reduced to the analog of the
gradient and the divergence in the five-dimensional de Sitter
formalism. This case was partially treated in Ref. 26, where
it was demonstrated that the Gupta~Bleuler minimal struc-
ture is reached for the spin-s-dependent gauge fixing ¢, = 2/
(2s + 1). This study is continued in Sec. VII, where the
third recurrence formula, necessary to the construction of
the massless states, is restated and completed. Very convinc-
ing indications in favor of true indecomposibility exist. They
are based on simple checking in the lower-spin cases. How-
ever, no rigorously complete proof can presently be given.
This explains the presence in Secs. VI and VII of a certain
number of conjectural assertions.

Section VIII finally deals with the propagation problem
through the construction of invariant two-point functions or
homogeneous propagators. Besides the purely light-cone
propagation of the massless fields for a particular gauge, i.e.,
when the gauge-fixing parameter is adjusted to the “good”
value ¢, =2/(2s + 1), a striking feature for the massive
fields of integral energy emerges: the homogeneous propaga-
tor of the corresponding unitary irreducible representation
% admits a decomposition in two terms. The first one is
responsible for a propagation confined to the light cone
whereas the other one, describing the propagation into the
light cone, has as an analytic factor the polynomial propaga-
tor for the unique finite irreducible representation Weyl-
equivalent to % . This remarkable duality certainly deserves
further investigation.

Il. (34 2)-DE SITTER SPACE, ALGEBRA, GROUP, AND
REPRESENTATIONS

The (3 + 2)-de Sitter space’! is most easily described as
embedded in R’ provided with the metric: &,
= diag(1l, — 1, — 1, — 1,1). Here, the Greek letters take the
values 0,1,2,3,5. The missing number 4 is left apart for a
possible extension to conformal theories. Points in R’ are
thus denoted by

y = (.Vo, y19 y21 y39 ys) = (y()’y9 y5) = (,Va ),

and the de Sitter space can be visualized as (the covering
space of) the connected hyperboloid

=0,V =y —¥ +y5 =1/p,
p being the (positive) curvature. Integral spin fields in de

Sitter space are represented by using symmetric tensor fields
on the hyperboloid:

Y=k =(ky,...a(»))

where s is the rank of k.
Some definitions become necessary here.
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(a) Symmetrizer: The symmetrizer of the tensor prod-
uct of two symmetric tensors £ and 7 of rank p and s — p,
respectively, where p<[s/2], is denoted by Z,. The compo-
nents of the symmetrized tensor product are given by

(Epgﬂ)a,“'a, = ) Z ) gai‘a,»‘~~~a,P77a,~“d,f”d,;”d,-;“ﬂ,'
T 2.1)

(b) Transversality: A symmetric tensor field & is said to
be transverse if
=0,

or more concisely y-k = 0. The transverse projector for ten-
sors of rank 1 is defined by the symmetric rank-2 tensor
O=(0,,):

O = Oop — PYas- (2.2)
(Important note: hereafter, j is denoted by 1/p, whether it
is a constant or not.)

Precisely, the transverse projection Tk of the symmetric
tensor of rank s, k = (k,,,..., ), has the components

(TK) 4., = (H. ®,,f") ks....p.-

(¢) Tracelessness: A symmetric tensor field k is traceless

Vkeya =Pk

s~ 1

(2.3)

if

8%~ '“‘ka,...as_z,,s_ o, =0.
The trace of an arbitrary tensor k is denoted by k’. It is a
symmetric tensor of rank s — 2, the components of which are
given by

k") yriay_, =

a2

g, (2.4)

More generally, the nth trace, n<[s/2], of an s-rank tensor is
denoted by k :

(R T T

n times

k (")E(‘ (k’)’ ..)’ .

The group of isometries of (the universal covering of)
de Sitter space is the pseudo-orthogonal group [ SO(3,2) ]
SO(3,2). Let us describe its action on symmetric tensor
fields of rank s. The infinitesimal generators in this vector
space are denoted by L ) = — Lf). We stress, when it
seems necessary, the importance of the rank s by making it
explicit in the various symbols introduced in the text. Note
that the rank s should generally be dissociated from the value

s of the spin. The generator representatives L } are defined
by

LY=M,+55, (2.5)
where M_; is the “orbital part”
J (2.6)

Maﬂ = i(ya aﬁ —yB aa)’ aa =T
a”
and S {}) is the “spinorial part”
Haroa, =1 BaaKabyooa, = Bpak G-

(2.7)

The second-order Casimir operator representative is de-
noted by Q.:
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Q =£L (‘2L (s)aB
5= aj M
The following contraction formula enables one to express it
in terms of J:

IMPM,, =Q,= —p '3°d,=—p'd% (2.8)
Herein, d designates the transverse projection of the gradient
d and can be considered as the tangentional derivative:

3,=0,,3%=3, —py,y9, (2.9)
MPSDk=23,9y -k —22,ydk— 2k, (2.10)
1S WS Dk = s(s + 3)k — 22,6k . (2.11)
The expression for Q, follows:
Q.k =Qk+23,d-k—23,yd'k
— 23,6k’ + s(s + 1)k. (2.12)

It is clear that the operators d, L {3, and @, commute with y*:

they are intrinsically defined on the hyperboloid y* = const.

lll. D{E,,s)-CARRIER STATES: TWO RECURRENCE
FORMULAS

The group SO(3,2) is a real form of the complex Lie
algebra named B, in the Cartan classification.?” The finite
irreducible representations are labeled by two positives inte-
gers (k,,k,) (dominant weight) but we use (E,,s) instead:

E, =k —ky/2, s=k,/2,
since they are more adapted to physical representations. In
what follows, E, is allowed to take arbitrary real values
whereas s takes integral or half-integral positive values. Here
E, is the lowest among the eigenvalues E (energy) of Ls,and
the spin s is the angular momentum of the lowest energy
space. The corresponding representations are denoted
D(E,,s). If D(E,,s) is irreducible, the second-order Casimir
operator takes the constant value

(QEY =Ey(Ey—3) +s(s+1). 13.1)
The representations D(E,,s) are irreducible and unitary if
s=0 and E;>}
s=1 and E;>1,
s»>1 and E;>s+ 1.
At the lower limit of unitarity, i.e., D(4,0), D(1,}), and
D(s + 1,s) for s>, invariant subspaces exist. Unitarity and
irreducibility are restored by considering quotient spaces.
We are now in a position to say more about the represen-
tations D(E,,s) and their carrier states. The most familiar
way to characterize a carrier space is to appeal to the solu-

tions of some differential equations. Let us consider the fol-
lowing “wave equation”:

(Q, —(@ENk =0, (3.3)

supplemented with the auxiliary conditions: homogeneity,

(N—Nk=0, N=y-3 (3.4a)

(3.2)

(N is an arbitrarily fixed complex number); transversality,

and divergencelessness,
d-k=0. (3.4¢c)
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Note that the two last conditions imply the tracelessness
k' = 0. Note, too, that the auxiliary conditions permit one to
simplify considerably Eq. (3.3):

(Qo - Eo(Eo - 3))k =0.

An ambiguity arises when we try to characterize
D(E,,s) spaces with the aid of Egs. (3.3) and (3.4): the
latter admit as well a space of solutions carrying the repre-
sentation D(3 — E,,s), since (Q %) = (Q 2~ %) is trivially
verified. Besides the explicit action of L,, a way to distin-
guish between both is to examine the behavior of the states at
spatial infinity.?® It will be possible to achieve this once given
the recurrence formulas. The latter permit one to build up
the carrier states and make both possibilities appear.

The recurrence formulas make use of constant polariza-
tion five-vectors Z = (Z,) that carry the five-dimensional
representation D( — 1,0). An orthonormal set of five such
vectors is presented in Table I: they are classified as to which
energy 0, 4+ 1 and angular momentum 0, + 1 they carry.

Moreover, expressing tensors of rank s in terms of ten-
sors of rank s — 1 involves operators that obey commuta-
tion/intertwining rules with the generators L () and the
Casimir operator Q;.

The operator 3,0-Z: The contraction of the transverse
projector ® with a polarization vector Z permits one to de-
fine an operator that makes a symmetric transverse tensor
field & of rank s from a symmetric transverse tensor field £ of
rank s — 1:

k=2,0-Z¢,. (3.5)

Such an expression will be a key piece in reducing the
tensor product D(Egs — 1) ® D( — 1,0). Indeed, the linear
span of {®-Z}, Z taking the values of Table I, is the carrier
space of D( — 1,0) in terms of transverse tensor fields of
rank 1.

The operator T, m(Z,Z'): Let Z and Z’ be two polariza-
tion five-vectors. They serve to build up the transverse five-
vector field:

WZ,Z')=pWyZZ' —y-Z'Z). (3.6)
The linear span of {7(Z,Z ')}, Z and Z ' taking the values of
Table I, is the carrier space of the ten-dimensional represen-
tation of SO(3,2): D( — 1,1). Table II is a classification of
its basis elements according to their energy and angular mo-
mentum. The operator 2,79 (Z,Z ') makes asymmetric trans-
verse tensor field k of rank s from a symmetric transverse
tensor field ¢ of rank s — 1:

k=29(Z,Z")¢.

This construction will be important in reducing the tensor
products

D(Ey+1s—1)eD(—1,1).

The operators w(Z,Z') and Q,(Z,Z'): The five-vectors
Z,Z’ equally serve to build up the five-component transverse
differential operator

NZZ')=0-Z'Z:3—O-ZZ'4. (3.7)

We then define O, (Z,Z')=T 2 ,@(Z,Z"), which makes a
symmetric transverse tensor field & of rank s from a symmet-
ric transverse tensor field § of rank s — 1:
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TABLE L Set of five complex five-vectors Z* = (Z %), where a takes the values +, —, kK +, k —, k, (i, j,k) being an even permutation of (1,2,3). They
span the tangent space of R®; the latter is provided with the metric8,; = ( +, —, —, —, + ). They can be used as orthonormal-basis elements of the carrier
space for the five-dimensional fundamental representation D( — 1,0). As eigenvectors of L’ and L (", they are classified according to the respective

i

eigenvalues.
zZ + VA k+ zZ k— z k
8 i5 8,5 — 16, 8, + b, 8, — 16,
Polarization vector Z* = (Z2) Z}= as + Puo ;:M ";+=g z";—z_"i_"ﬂ. Zk =5,
V2 V2 V2 V2
Energy as eigenvalue of L {)’ -1 0 0 0
Angular momentum as eigenvalue of
LY, (i, j,k) being some 0 -1 +1 0

even permutation of (1,2,3)

k=Q,(ZZ")¢. (3.8)

The operator Z,®: It makes a symmetric transverse ten-
sor field & of rank s from a symmetric transverse tensor field
{ofrank s — 2:

k = 22®§.

The generalized or “purified” gradient D.: The operator
D, makes a symmetric transverse tensor field k of rank s
from a symmetric transverse tensor field { of rank s — 1:

k=D =p~'T3,

=p713,(@+p(s — ). (3.9)

The transverse divergence 3 7. : The simple divergence
d-k of a symmetric transverse field of rank s is not trans-
verse. We thus define

dT-k=Tdk=3k+pZ yk' (3.10)
The following equivalence between conditions should be
mentioned: d-k = Oifand onlyif d -k = Oand k' = 0. The

features common to the operators ®, D,, and d 7 are their
intertwining properties:

L$33,0n=Z2,0L 5 ¥, (3.11a)
LD =DL5 VG, (3.11b)
Ly 9T k=09T(L k), (3.11¢c)

TABLEIL The D( — 1,1) states p(Z%Z“) = — (Z“,Z ") classified ac-
cording to their energy and angular momentum. These ten states form an
orthogonal basis of the D( — 1,1)-carrier space.

Z° Z+ YA Zk+ Zk— Zk
yAd
E=0 E=—-1 E= —1 E=1
Z+
s=0 s= —1 s=1 5s=0
¥ s=—1 s=1 s=0
E=0 E=0
zk s=0 s=—1
E=0
z+- s=1
Zk
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where ), §, and k are symmetric transverse tensors of rank
s — 2, s — 1, and s, respectively.
An immediate corollary holds:

0.2,0n=3,00,_,7,
QSDS§='D.:QS— |§,
Qs—l (9 T'k = a T(st)

Moreover, we have the commutation/contraction rules
between 2,0, D, and d 7-:

(3.11d)

D, 2,09p=2,0D,_,9, (3.12)

d72,0n=32,09"n+pD,_,7, (3.13)

dTDL = —(Q,_, —(@i*' N
—43,0¢'+D,_, dT-¢. (3.14)

The intertwining rules obeyed by the polarized opera-
tors2,0-Z,2,9(Z,Z"),and Q,(Z,Z ") are more complicat-
ed. For this reason, they are given in Appendix A. It is suffi-
cient to note that 2,0-Z, 2,0, and D, form a closed set with
respect to them, asdo 2, 9(Z,Z'), N, (Z,Z"), 2,0, and D,.
These rules are the necessary elements of the (mainly techni-
cal) proof of the following recurrence formulas.

Proposition 1 (first recurrence formula): Let & be a car-
rier state for the representation D(Eys) [resp.
D(3 — E,,s) ], with E, different froms+ 1 and 2 —s. As a
solution of Eqs. (3.3) and (3.4), it is given in terms of ten-
sors of rank s — 1 and s — 2 through the recurrence formula

k=202, + 2,08, + D¢, (3.15)
Here, {, is a carrier state for D(E,s—1) [resp.
D(3 — E,s — 1)] and thus obeys

(@1 — 4@ 05 =0,

1 16 (3.16)

y6i=0 3£=0 (N—Ng¢, =0.
In Eq. (3.15) §, and {5 are completely determined by £,,
$o= —1[2/(2s— 1)1Z-§, carries D(E,s—2) [resp.
D(3 — Eys —2)], and
1
(Eg—s—1)(Ey—2+5)

§3=

X[Vz§1 — (s+ Dpy-Z§, —'zs_zf_l" 126 -

Here,
V.l =20+ p2,yZ-t=TZ 3.
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The terms making up the expression of {5 can be rear-
ranged (except if E,=3) in order to display their group-
theoretical meaning:

1 y- N4 ]
= +
5 2E,—3|E,+5s—2 E,—s—1
20D, | Z-
- pD: 1 2%, NERT)
(2s—1)(Ey—s— 1 (E;—2+5)
Here,

D, _
n_=vz§l+p(Eo—3)y‘z;l+3E—Lsi, (3.18)
n_ is a carrier state for D(E,— 1,s—1) [resp.
D(4 - Eys — 1)]; and

PDS—IZ.gl
=V, —pE,y 2L, — —— 2~ 3.19)
+ z61 — pEy y* 2§, E,ts—2 (
7, is a carrier state for D(E,+ 1,s—1) [resp.

D(Q2—E,s— 1)}

The reason for the exclusion of E, = s + 1 (that is, the
lower bound of unitarity) and E, = 2 — s is manifest. We
shall return to this question later. Let us remark that a de-
generacy case appears at £, = 3, i.e., E, =3 — Ey: 77, and
77 _ are then identical and the only valid expression for {; is
the first one.

The first recurrence formula simply illustrates the ten-
sor-product reduction:

D(Eys—1)eD(—1,0)
= D(E,s) @ D(E;s — 1) ® D(Eys — 2)
eD(E,—1ls—1)eD(E,+ 1s—1)
[resp. D(3 — Eps— 1)@ D(— 1,0)].

Proposition 2 (second recurrence formula): Let k be a
carrier state for the representation D(E,s) [resp.
D3 — E,s)], with E, different from s — 1,5, s+ 1,2 —3s,
3 — 5,4 — 5. Asasolution of Egs. (3.3) and (3.4), it is given
in terms of tensors of rank s — 1 and s — 2 through the recur-
rence formula

k= Q(Z2,2'),+ 2 m(Z,2")¢, + 2,08; + D&,

(3.20)

Here, £, is an arbitrary linear combination of two tensors
§.:6=p, 6, +u_¢_, and should be homogeneous of
degree N + 1. Now, { isacarrierstatefor D(E, + 1,5 — 1)
[resp. D(2—Eas—1)], {_ is a carrier state for
D(E,— 1,5 — 1) [resp. D(4 — Eys — 1) },and &,, &5,and &,
are completely determined by & , .

First,

So=p (E;—2)5, +u_(1—-Ey)d_.

Next, to find ¢; and &, we introduce eigenstates of Q, _,
built from ¢, through contraction with 77 and @. For con-
venience we do not specify the (Z,Z') dependence of
MWZ,Z') and w(Z,Z'). Now, {,_ = (E;—1)yn§,
+w0¢,, &,_ carries D(E;,s—2) [resp. D(3—E,
s=2)I; $ii=—Emiit+ob,, §is carries
D(E,+2s—2) [resp. D(1 —E,s—2)]; [
=(Ey,—3)né_+o¢&_, {__ carries D(Ey,—2,5s—2)
[resp. D(5—Egs—2)]; and §_,=Q—-E)yé_
+w¢_, {_, carries D(Ey,s—2) [resp. D(3—E,
s —2)]. We then have

§3 2/*‘+ [ 2Eo é— §++ ]
2E,— 1 25—1 777 Eo—s

[ & _25-3, ]

—5 Ej+s—3 2—1°""]

Another dlﬂ'erentxal operator, denoted by £ =% (Z,Z"), is
involved in the expression of §,:

EL=Tn ol +p2(©-Z2'Z( —O®-ZZ'-§).  (3.22)
Further eigenstates of O, _, are then introduced:
2p
F T ST DB 5= D)
XD;_((s—=Dn-§, —o°8,),
x . carries D(Ey + 1,5 — 1) [resp. D(2 — Eys — 1) ]; and

2p
_=%¢_ +
5 (Bg—s— 1) (Ey+s5—4)

XD;_{(s—Dnpd_ —a§_),
- carries D(E, — 1,s — 1) [resp. D(4 — Ey,5 — 1)]. With

(3.21) these definitions, &, is given by
]
Ei=p [ X+ _ 20D, {._ pD._ 5. ]
T E —s—1 (S—1)QE,— 1) (Eg+5—2)  (2Eg— 1)(Ey—5)(Eo—s+ 1)
—u [ X— 2st—l§—-+ + st—lé-—— ]
T LlEy+s—2 (25— 1)QRE;—5)(Ey—s—1) (QE,—5)(Ey+s5s—3)(Ey+5—4)

The second recurrence formula partially illustrates tensor-product reductions involving the ten-dimensional representa-

tion D( — 1,1):

D(Ey+ 1,5 — 1)@ D( — 1,1) = D(Eq,s) ® D(Ey+ 1,5 — 1) @ D(Eg + 2,5 — 2) @ D(Eq,s — 2) @ [D(Ey + 1,5)

®D(Eps — 1) @ D(Ey+ 1,5 —2) ® D(Ey + 2,5) @ D(Ey + 2,5 — 1) ]

[resp. D(E,— 1s— 1) D(— L,1)].

The expression between brackets in Eq. (3.23) has no corre-
sponding element in the recurrence formula. The reason for
all exclusion cases concerning E, is manifest. Degeneracy
phenomenaoccur when £, = 4,3,3:§, _and{, , areidenti-

2538 J. Math. Phys., Vol. 29, No. 12, December 1988

(3.23)

J

cal for E, = whereas { _ =¢_ . for E,=3. The corre-
sponding factors are simply canceled. On the other hand, the
recurrence formula can be considered as valid when E;, = s
or s — 1: it is then necessary to put &, = 0 and the D(E,,s)
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states only are used to build up the D(E,,s) states. Symmet-
rically, we can put £ _ = 0 when E; =3 — s or 4 — 5. Only
D(E, + 1,5 — 1) states are then used.

The ground state for D(Ey0)," ie, y75
= (ps + iy,) ~ ¥ and the recurrence formulas permit one to
get the expression of the absolute ground state for D(E,,s)
(described as a symmetric transverse tensor of rank s). First,
we have the relationship between the D(E;s — 1) ground
state g5~ ' () and the D(E,,s) ground state g, ()

g5 O« M(Z*Z )y g '),
where

n(zk_,z+) =p(y.Zk_Z+ '—y'Z+Zk_),
ie.,

N (Z*,Z %) = (P2, — 9)) (85 + i80)

— Y+ (5ai - i‘saj ))1
is the absolute ground state for the ten-dimensional repre-

sentation D( — 1,1). Repeating the induction procedure
leads to

g.;z"(y)oc[n(zk_’z-%)]@syI(En+s)’ (324)

where the notation [ ] ®® abusively stands for the symme-
trized sth-tensor power of n(Z*-,Z *).

Note that the asymptotic behavior of g ;- at spatial in-
finity is independent of s; it is simply determined by the fac-
tor y ; . Finally, the whole carrier space of D(E,,s) is built
up through the usual action of energy and angular momen-
tum-shifting operators:

. raising
L TIL§: energy-

; . operators,
lowering

raising

L P LY. angular momentum-
yo ik lowering

operators,
where (, j,k) represents an even permutation of (1,2,3).

IV. WEYL EQUIVALENCE BETWEEN
REPRESENTATIONS

Let us go back to the difficulty that arose in Sec. III
about the determination of the carrier space from the wave
equation (3.3) and the auxiliary conditions (3.4). Two dif-
ferent types of solutions are distinguished by their behavior
at spatial infinity. The first type that carries D(E,,s) behaves
like |y| ~ B, whereas the second one behaves like |y|% ~* and
therefore carries D(3 — E,,s). These representations are
Weyl equivalent, i.e., they admit the same values for all Casi-
mir operators

D(E,s) = D(3 — E,,s).
w

These W-equivalent representations may be both unitary
[cf. (3.2)] but generally only one of them (the one with
greatest E,) is.

The situation is more complicated when E, is integer or
half-integer since more representations admit the same value
(QE). The external weights that characterize them are in
the W orbit @ ,, of the weight [ E,,s].?” This W designates
the Weyl group of the algebra B,:
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O, = {[Eps],[Ep — s — 1],[1 — 5,1 — E],
[l —5E,— 21,13 — Egsl,
[3 —EO: -5 - 1]7[s+ 2’1 _EO]a

s +2,E,—21}.
They are obtained from two substitutions:
[EO—-»3 — E,, [Eo—»s + 2,
s—E,—2,
corresponding to reflections about the Weyl axis in Fig. 1.
Negative spin weights are not possible, and this reduces the

number of Weyl-equivalent representations to at most four.
Several cases are possible according to the value of

$—5,

oc=E;—s.

The generic case occurs for o> 3, with four W-equivalent
representations, one of them being unitary and another fi-
nite.

N

2z D(s+2s5s+0-2)
D(s+o,s) ¥

unitary

D(3 —s—o0,3)
finite

=y
A

Dl —ss540-2)

(see Fig. 1). In fact, finite irreducible representations occur
if
oc=01.2,...

Here D(1 —s,s — 1) is of particular interest: it is Weyl
equivalent to a massless representation D(s,s — 1) (limit of
unitary o = 1 or 3, see Fig. 1). There are other interesting
cases:

E(): — 85— 0,

o=13
o=1}

(massless case),
(supersymmetric case),
o=2

E,= %] (degenerate cases),

the Dirac multiplet (see Fig. 1 and Refs. 29 and 30).

In the remainder of this paper, only integral values of
spin and energy will be considered. We shall make use of the
abbreviations Urrep (Firrep) for unitary (finite) irreducible
representations.

V. THE INTERTWINING OPERATOR #,, ,

The occurrence of the two (generally) nonunitary rep-
resentations D(s+2s5+0c—~2) and D(1 —ss+o0—2)
Weyl-equivalent to the Urrep D(s + o,s) and the Firrep
D(3 — s - 0,5) is intimately related to the existence of a dif-
ferential operator 2, ,_,., of order ¢ — 2, that inter-
twines representations carried by tensors of rank s and
s + o — 2, respectively. More precisely, we have the follow-
ing proposition.

Proposition 3: To any Firrep D(—s—0,s),
o=0,1,2,..., one can associate a differential operator
P o415 Of order o+ 1. The action of this operator is
defined on transverse symmetric tensor fields of rank s and
transforms them into transverse symmetric tensor fields of
rank s+ o+ 1. Then &, . possesses the following
properties.
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o<l
D(s+25+0-2)

" DG Weyl axis

—— e — — e ——

RN : s
D”‘-f,.r)\ i o]
\ D(1 —ss5+1)
- o iy 30 -
C o) ! D(2 —s)
i \ D(l-s5+0-2)
PN\ ‘
D(l—s5s5-1) :
F ‘ AN
D3 ~s5—0s) \
g ' N
N
A
A \?"/e%
0/;“ N
% AN
% AN

FIG. 1. Weyl equivalence is shown. The generic case (four representations,
one unitary and one finite) occurs for o> 3.For o = 3, there are still four W-
equivalent representations but besides the unitary and the finite representa-
tions there is a massless representation D(s + 1,5). Here o = § or § corre-

sponds to a “supersymmetric multiplet” since it mixes representations with
spin s and s + }, two representations are unitary and there is no finite repre-
sentation. Here o = 2 is a degenerate case with only two W-equivalent rep-
resentations (one of them is unitary ). The most degenerate caseis D(3/2,s)
since there is no W-equivalent representation to it. The multiplets with s < 1
have special properties: for instance, o = §, s = Oiis the Dirac multiplet. Be-

sides the two unitary representations it contains the two peculiar represen-
tations: Di and Rac (unitarity limit).

(i) The operator #,, .. ,, cancels the space of
D(—s—os):

P ror1rsb, =0, for all D(—s5—os)-state §,.

(5.1)

For this reason, we shall sometimes call 7, , | the “an-
nihilator” of D( — s — o,s).

(ii) The operator Z,, ., ,, obeys the intertwining
rules:

‘@s+o+ 1,sL ‘(1.2 =L ¢(1~;9+0+ l)gs+ o+ 1,5°
As a trivial consequence,

'@:+a+l,st =Qs+a’+l'@3+0+l,s‘ (5.2)

(iii) The building blocks of the operator Z_ , , ,, are
the generalized gradient D,, and the operator 2,0, i.e.,
Z .+ o415 18 a polynomial in D, and ¥,®, and has leading
term

Ds+a+le+a”'Ds+l'
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Details are given in Appendix B.

The simplest example that comes to us is the transverse
gradient D, =p~' 9= 1.0 Itisprecisely the annihilator of
the constants and the latter can be considered as carrying the
trivial representation D(0,0)!

We are now in a better position to understand the ques-
tion of the Weyl equivalence between representations in the
general situation described by Fig. 1.

The carrier spaces of the (nonunitary) representations
D(s+2s+0c—2) and D(1 —ss+0—2), 0>3, are
made up of the solutions of the wave equation
(@4 o—2 — Q% 7))k =0 supplemented with the auxil-
iary conditions (3.4). Because of the intertwining rules (ii)
and the property (i) stated in Proposition 3, invariant sub-
spaces of solutions might exist that are precisely formed by
what we call a “generalized gauge field”:

k= ys+a——2.s§’ (5'3)

provided that £ obeys the inhomogeneous wave equation,

(Q, — Q" NE=¢,, (5.4)
where ¢ - carries the Firrep D(3 — s — o,5). The solution §
should be of homogeneity degree N — (o — 2) in order that
k be of degree N and the divergencelessness has to be en-
sured. The result stated below helps one to answer this ques-
tion.

Proposition 4: Let k be dgﬁned by (5.3).Its trace k ' and
its traceless divergence d -k involve six operators #{, ,
0<i<6, 5,>5,, that intertwine the generators L 5y and L {3,
ie.,

GO@PH — P T (s
Lg A, =ROL G
namely,

K'=RY ,_(Q, —(QSTN¢

+ ‘@iz-ga—&s——zgl + ﬁf‘?a—ft,s—l aT.é—’ (563)

aT.ié = '@.g?a—}.s(gs - (Qi+0’));

+ R s 2l R 10T L
(5.6b)

The building blocks of the operators 72, are the operators
D, and 2,0. )

The proof uses recurrence techniques, intertwining/
commutation rules and the following formulas concerning
traces:

(5.5)

(LGk) =LS 2k, (5.7a)
(D) =D, _,5'+2p7'37¢, (5.7b)
(2,07) = 2,07 + 2s7. (5.7¢)

Here, { and 7 are of rank s — 1 and s — 2, respectively.

Let us now assume that the s-rank tensor § obeys Eq.
(5.4) with {,=0 and is divergenceless, which implies
§'=0,87-¢ =0. Equations (5.6a) and (5.6b) of Proposi-
tion 4 state that k' = 0,3 T-k = 0, i.e., k is also divergence-
less. Consequently, there really exists an invariant subspace
of solutions of the wave equation (3.1) and its auxiliary con-
ditions (3.2) associated to the representations
D(s+25+0—2) and D(1 —s,s + 0 — 2). What is the
representation carried by this subspace? A first candidate is
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reasonably the Urrep D(s + o,s). Hypothetical indecom-
posable representations are thus suggested:

Ds+25+0—2)-D(s+ 0,5)
or
D(l—ss+0—2)-D(s+ 0,5)?

The arrow means that successive actions of energy-raising
and energy-lowering operators onto the fundamental states
gty ?orgit? *makethestate 7, ,_, g3, ,appear
in the resulting expression. The second possibility should,
however, be excluded because of another remarkable feature
of the operator Z ,_,,.

Proposition 5: All the (s + o — 2)-rank carrier states of
the representation D(1 —s,s+ 0 —2) are generalized
gauge fields.

Indeed, two realizations of D(1 — s,s + o — 2)-carrier -

space exist. One of them is made up with tensors of rank
s + o — 2 whereas the other is formed of tensors of rank s up
to the addition of D(3 — s — o,s) states. The corresponding
intertwining operator is precisely 2, , _ , . This factis put
in evidence by the connection between respective ground
states:

g;t‘;_z_'@s+o’—25hitz_2’ (5'8)
where
RiT 2 [((ZR,Z )] ZR) 2 (5.9)

Moreover, there exists a D(s + 2,5 + o — 2) state /519~ ?
that should leak to the ground state (5.8) when acted on
(2s + 1) times by a lowering-energy operator. This state
reads

/ii g_ 2 o« 2min(s,a— 2) [n(Zk-vZ +) ] ®s

X [p(Z*,Z2%) )% ;2 (5.10)

The conclusion of this discussion is a first conjecture (veri-
fied by hand in the lower-spin cases).

Conjecture 1: The space of solutions of the wave equa-
tion (Q,, ,_, — (@Q:*9))k =0, 0>3, supplemented with
the conditions

3k=0, (N—Nk=0,
carries the direct sum of the two indecomposable representa-
tions:

D(s+ 25+ 0—2)-D(s + o,),

Dis+2s+0—-2)-D(l —s,s+0—2).

(5.11)
(5.12)
s+o—2

Here g {127 is the absolute ground state for the first one
whereas /3% 7~ 2 is a cyclic state for the second doublet.
Describing another doublet in which the representation
D(1 — 5,5 + 0 — 2) could be involved necessitates a modifi-
cation of the subsidiary conditions accompanying the wave
equation (3.3). For this purpose, let us consider the space of
solutions of (Q, , ,_, — {Q3:* ) )k = 0 supplemented by

(N= Nk =0, (5.13a)
k=2, .5, (5.13b)
AT k=RL ,_ L, (5.13¢)
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where {, can be any state carrying the Firrep
D(3 — s — 0,5). Let us now consider the generalized gauge
fieldsk = 2, +o—2s6 forwhich {issolution of the equation
(5.4) with the second member {, different from zero. Here {
and §, are supposed to be of homogeneity degree
N — (0 — 2) and are divergenceless. A recurrence formula,
adapted from Proposition 1, can be set up for such solutions
& and would lead to the following expression for the lowest-
energy state:

g, ={l/[2(s+0)—-31)g5_,_,Inypy,.. (5.14)
This logarithmic ground state satisfies
(Q QN8 =83 5o (5.15)

A simple checking leads us to affirm that g, is divergence-
less. All the divergenceless, homogeneous solutions of
(Q, —(Q:*"))¢ =, are generated by (5.14) and pro-
duce generalized gauge fields k that are solutions of (3.3)
and (5.13).

Next, starting from the ground state g, and applying
onto it the raising-energy operator (¢ — 2) times permit one
to reach the absolute ground state (s-rank version) A{+2~?
for D(1 —s,s+ 0 —2) modulo logarithmic states and
D(3 — 5 — o,s) states. If we go higher by applying a number
of times raising-energy operators equalto2(s + o — 3) + 1,
the maximal length of a ladder in the weight diagram of the
Firrep D(3 -- s — 0,5), we see the logarithmic states disap-
pear and only the D(1—s,5+4 0—2) states, modulo
D(3 — s — 0,s) states, stand in the final expression.

On the other hand, the state A{* 72 leakstog$_._,
when acted on a number of times equal to 2 — o by lowering-
energy operators. We conclude that g, is an absolute ground
state for the following indecomposable representation:

D3 —-s5s—o0s5)-D(l —ss5+0—2)
-D(3 —s5—0,5). (5.16)

Now, the expression of the generalized gauge fields contains
neither the logarithmic state nor the D(3 — s — o,s) state,
since

(i) the operator & _, annihilates the latter,
(ii) ‘@s+ o— 2,:;/ ln \/;y+

= (‘@s+0—2,s§/)ln \/;;y+

+ z P$,2;In VoY
ij

where the symbols &, designate derivations. We finally
reach the conclusion that thefieldsk = Z _, ,_, .§, where ¢
carries the triplet (5.16), carry the indecomposable doublet

D@3 —5s—0,5)-»D(1 —s,s+0—2). (5.17)

VI. THE DUAL INTERTWINING OPERATOR #%, AND
THE GENERALIZED GUPTA-BLEULER TRIPLETS

It is obviously possible to go further into the search for
more complex indecomposable representations involving
the four representations of Fig. 1. However, they will be as-
sociated to higher-order wave equations supplemented by
less constraining subsidiary conditions. A central role is then
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played by the operator &, ,_,, andits “dual” ¥ _ . _,,
defined as follows.

Definition: The operator Z¥,, 5’ > s, is defined on trans-
verse symmetric tensor fields k of rank s" and transforms
them into transverse symmetric tensor fields of rank s. It
obeys the intertwining rules

PELY =LPY,.
Its building blocks are

(6.1)

(i) the transverse divergence d ™,

(ii) the second-order Casimir operator Q,,
(iii) the trace,

(iv) the symmetrizer 2,0,

(v) the purified gradient D,.

Its leading term is

s — s times
The properties that completely determine its expression pro-
ceed from a generalization of the contraction formula
(3.14). Simple linear analysis leads to the following state-
ment.
Proposition 6: The dual operator ¥, is entirely deter-
mined by the following conditions.

(i) The tensor field 2%, is differential of order s — s.
(ii) The tensor field Z ¥ k is traceless, whenever k is
(s' — s 4 1)th traceless:

k s’i—‘.'x;i 1 — 0.
(i) When applied to a generalized gauge field
k= Z,.§ where { is traceless, a polynomial expression in
the powers of Q, is obtained:

sS—s5—1

'@:s"@s’,sfzﬁ(gs - <Q§'+2>) H (Qs - a,’)ga (6-2)

i=1
where the a,’s are strictly positive functions of s and s’ and
different from (Q ¢ *?) for any /, and B is a certain constant.
Some examples of operators &, ; and Z ¥, are given in
Appendix B.
Let us now consider the space of solutions of the
2(o — 2)th-order wave equation:

-6 @ —ato)

i=1

X (Qs+a——2 - (Q;+o’>)k

+c'@s+a’—2,s‘@:s+o—-2k=0’ (6-3)
supplemented by the auxiliary conditions
k=0, (N—Nk=0, (6.4)

where c is a constant called the “gauge fixing parameter” for
reasons that will appear later.
The generalized gauge fields k = &, ,_, . §, with

£'=0, (N—(N—o+2))¢=0, (6.5)
clearly form a subspace of solutions if { satisfies the inhomo-
geneous equation

og—3

-8 [Tl @ -a)] @ - @:*ne=¢,
- (6.6)
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where {  carries the Firrep D(3 — s — 0,5).

On the other hand, applying the dual operator
P¥, + o2 totheleft member of Eq. (6.3) leads to the homo-
geneous equation

o—3

(c— l)ﬂ[ II (e —ai)]

i=1
X(Qs_(Q§+a))'@:s+a—2k=0' (67)

We see that the wave equation (6.3) becomes fully
“gauge invariant” if we put ¢ = 1. For other choices of ¢, a
structure analogous to that of the Gupta—-Bleuler triplets of
Minkowski QED or of de Sitter QED'>**! could appear in the
space of solutions.

Hereafter, we shall exclude the case ¢ = 1. Since the di-
vergencelessness d-k =0 implies ¥, ,_,k =0 (each
term of the latter contains at least either a trace or a trans-
verse divergence @ 7+ ), Egs. (6.3) and (6.4) possess as par-
ticular solutions those previously described, i.e., carrying the
possible indecomposable representations

D(s+2s54+0—-2)-D(s+ 0,8)
and

Ds+2s5s4+0—2)-D(1 —5s5,5+0—2).
Next, let us examine the states k whose “generalized diver-
gences” Z¥, ,_,.k carry D(s + o,5). They will be called
“dual states.” For instance, let us seek a state G;_, dual of
the ground state g §, , of D(s + o,5) and solution of Eq.
(6.3):

'@:s+a—2G§+a=g§+a‘ (6-8)

Because of the intertwining properties of Z#*, the
(s + o — 2)th-rank tensor G, carries an energy s+ o
and an angular momentum s, which justifies the notations.
The tensor G , can be written as follows:

G +o = Lo+ Ty
where the expression of the leading term T, is found to be

Lo Zrpineso - (MZ T, Z27)]%7 %85, (6.9)
The second term I', lies in the linear span of “subgauge
terms” like

®°’'D @_:Zri-ztt;)_ Kres
0<2r+t<o—2and§,,isofrank s+ o0 — 3 — 2r —t. The

same linear span contains (Q,, ,_, — (Qi*))I, or

equivalently (Q,, ,_, — (@t NG:, .

When acted on by an energy-lowering operator (¢ — 2)
times, the state G , , could leak to g $T 5 2, the first-doub-
let ground state. Similarly, a state H 52~ 2, the solution of
Eq. (6.3) and dual of 5% <~ 2, introduced in Eq. (5.9), ex-
ists. It can be written

H';t(s’_z-_-%o’*%n
where

Ko % Epingso—2) [MZZ )] °(@-Z* ) !

(6.10)
and 7| lies in the linear space of subgauge terms like

©° DYDY .

s+o—2—

The same linear span contains (Q, , ,_, — (Q{* 7)), or
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equivalently (Q,,,_, —(Q:*°))H;*J"% When acted
on by energy-raising operators (o — 2) times, the state
H %9~ 2could leak to the cyclic state /% T~ % of the second
doublet, given by Eq. (5.10) modulo generalized gauge fields
carrying the doublet (5.17).

Generally ", and 57, contain logarithms, except for
one value of the gauge-fixing parameter ¢. This value is con-
jectured to be

c=2(c—2)/[2(s+0—-2) +1]. (6.11)

i |

Section VII shows that this result is true for the lowest
value of g: o = 3. It has also been verified for the cases s = 0,
o= 4, and o =5.

For such a value of ¢, the involved indecomposable
SO(3,2) representations should reach their simplest (“‘mini-
mal”) triplet structure. A (sub-) space of solutions of Eq.
(6.3) and (6.4) carries the direct sum of the following
triplets:

DAl—ss+0—-2)-Ds+254+0—-2)-D(1l —ss+0—12).

\ D(3 —€:— o,5) /

VIl. MASSLESS INDECOMPOSABLE
REPRESENTATION: THIRD RECURRENCE FORMULA

The limit case ¢ = 3 combines indecomposability with
unitarity. For a sake of convenience, we shall consider here
D(s + 1,s) rather than D(s 4 2,s + 1). Itis presently a' well-
known result that the representation D(s + 1,5) can be con-
sidered through quotient carrier spaces as unitary and irre-
ducible. This fact is directly proved from conformal-group
considerations'®: it is the restriction to SO(3,2) of massless
representations .7 ", s = |n|, of SO(4,2), the latter being
unique extensions of Poincaré massless representations with
helicity + s. The notation is borrowed from Ref. 14, where
this result is given. It should be remarked that the restriction
of 74 is the sum of the two scalar SO(3,2) Urreps D(1,0)
and D(2,0). This de Sitter “dichotomy” takes place at each
value of the spin s through the existence of two indecompos-
able representations where D(s + 1,5) occupies the central
part:

D(s+25—1)-D(s+ 1,5)->D(s+2,s— 1),

D2 —s558)-D(s+ 1,5)->D(2 —s,5)

° 7 . (1.2)

Dl —ss5—1)
The third recurrence formula will give more details of this
alternative. It replaces the two previous recurrence formulas
at their limits of validity: £, =5+ 1 and E, = 2 — s. These
singularities are related to the fact that they are reduction

points of the minimal weight representations.
The wave equation (6.3) reads, in the present case,

(7.1)

(@, —(Q@i*"Mk+¢cD; 3,k =0, (7.3)
where

d, k=2* | k=3T-k— (p/2)D,_ k', (7.4)
and the subsidiary conditions are

yk=0, k"=0, (N—MNk=0. (7.5)

Proposition 7 (third recurrence formula®®). Let c be dif-
ferent from 1. Let & be a solution of (7.3) and (7.4). More-
over, let us suppose that k is traceless: k' = 0. Then & can
admit the representation
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D(s+0,8)=D(s+ 2,5+ 0—2)-D(s + 0,5), (6.12)
(6.13)
=
k=2,02f, + 2,05,
+pD.D,_ {3+ D (54 + ). (7.6)

Here, &, is a carrier state for the Urrep D(s + 1,5 — 1) or the
nonunitary representation D(2 — s,s — 1). It is divergence-
less and homogeneous of degree V. Next, £, and §; are given
in terms of £, by

2 2
Gr= — Z:§, and §3=

25— 1 T 2s—1)°

Zg,
7.7

and carry D(s + 1,5 — 2) or D(3 — 5,5 — 1). Then £, is giv-
en in terms of £, by

So=[1/2s — D?1(V26, + p(s — 2)y-ZE))
(where VZETZ-Q) and satisﬁes’
[Qs—l - <Q§— 1>]§4 +[2/(2s—- 11D, _, aT'§4 =0.

(7.8)

(7.9)
Finally, &, is given by
Le=A+{[c2s+1) =2]/(1 = )}T. (7.10)
The tensor field A is divergenceless and satisfies
[Q_ —(Q:"DN]A=1,, (7.11)

where 7, is an arbitrary carrier state for the Firrep
D(1 — s,s — 1). The general solution of (7.11) has the form

A=[Q._, —(Q:*Y] 'n,~n, m(py,) (7.12)
[modulo D(s + 2,5 — 1) ® D(2 — s,5) states].
We here insist on the fact that the presence of a Firrep state
in the rhs of (7.11) is due to the canceling property of D,:
Ds"l/‘ =0,

for any carrier state of D(1 — 5,5 — 1). The tensor field I
satisfies the “dipole equation”

[Q_1 —(@:*DH T =0, (7.13)
but is a particular solution of that equation:
F=[-1/(2s—DI1[Q_, —(Q:* ]!
X[Vz6 —[V/(2s—1)]pD,_Z-¢,
— (s+ Dpy-Z¢£,]. (7.14)
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It contributes to logarithms not canceled by the action of D,.
Proof: The proof of this proposition rests on a few tech-
nical relations given in Appendix A. Because of the commu-
tation rules between Q, and d, -, and between X,0-Z, 3,0,
and D, the general solution of (7.3) is obtained by setting

k=202 + 2,00, + DD, (7.6")
where §,, £,, and ® have to obey
[Q—1 — (Qii{>]§1 +eD,_ 19, =0,
[Qs—z —(Q:t] )]gz +eD;_,0,_,5,=4Z-¢,,
(1-0[Q_, —(2:*D]®
=p((s+ 3)c — 2 Z¢§,
+c[pD;_(Z-6, + (s — 1)&,) — Tzagl
+ 2,049 — y-Z§ 1)
+ (p/2)D,_D,_,®'] +1,.
The tracelessness condition on k& reads
k'=0=30-2Z{] +2,00; +D,_,¥’
+2Z 6+ 56 +p ' 3TD). (7.18)
This condition is satisfied if the tracelessness of £, £,, and ¢
(£ =0,¢; =0, 9" =0) is combined with the equation
ZL +s6+p T d=0. (7.19)

Next, the expression (7.6’) has to possess a group-theo-
retical meaning. It actually displays the reduction, through
the leading term X,0-Zf,, of the tensor product
D(—-1,0)9[D(s+1s—1)eD(2—ss—1)] that cer-
tainly contains the indecomposable representations (7.1)
and (7.2). Hence £, has to be a carrier state for the above
direct sum of representations, which imposes its divergence-
lessness d-&, = 0. This is consistent with Eq. (7.15), which
is reduced to

(Qs—l - <Q§i } >)§| =0.
Similarly, Eq. (7.16) acquires a group-theoretical
meaning if £, is divergenceless. Its value can be chosen to be

[-2/(2s—1)]Z:¢,.
The fact that it carries D(s + 1,s —2) or D(3 — 5,5 — 1) is
easily understood through the identities
(Qs—2 - <Q§i;>)§2

=(@— s+ D=,

={—-2/2s—1DHQy— (s + 1) (s —2))Z:&, =0.
The inhomogeneous equation (7.17) can be rearranged:
P=P+A A=(Q,_,—(Q:*'N 'y,
(Q:—l - (Q§+ ]>)$

=[1/(1=0)][ — ¢/ (25 — 1),e(s + 3) — 2],

(7.20)

where [a,b,c] = aV,{, + bpD,_Z-§, + cpy-Z§, isan ele-
ment of the three-dimensional space E generated by the
three basic functions

VzglETZ'agv pD,_\Z:¢,, py-Zg,. (7.21)

However, one can compute the actionof @, _, — (Q@** 'Y on
each of them. Now, Q, _, — (Q@:* ') leaves E invariant:

(7.15)
(7.16)

(7.17)
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(Qiy — Q3 NVE,
= —2[s+ L1L,(s+ 1)(s—-2)],
(s — (Qi+l>)PDs_1Z'§| = —2[0,2s - 1,0],
(@1 — Q" Npy-Z8, = —2[1,0,s - 2].
Let us, therefore, look for a solution of (7.20) inside E:

(7.22)

S =, = [x,p:z]. (7.23)
We have to solve a 3 X 3 system
s+1 0 1 X
1 2s—1 0 y
s+1D(s—-2) 0 s—2/ \z
: —c
=——1| ¢/(25—1) (7.24)
2e—D c(s+3)—2

Obviously, the matrix determinant is zero. The first conse-
quence is the existence of a function ®, inside E that satisfies

(O, — (@57 l>)<I>0 =0.
It is given, up to a multiplicative constant, by
Q=L -1/(2s—1),-(s+ D] (7.25)

In fact, ®, is nothing but the 7, function of the first recur-
rence formula (RF) and d-k is proportional to it. The sec-
ond consequence is that (7.23) cannot be a solution of
(7.20) unless

c(s+3)—2___(s_2)
1—c¢ c—

c 2
Se=c¢,= .
25+ 1

(7.26)

In that case, (7.24) can be solved:
®,=[0,—1/(2s — 1D)3,1/(2s — 1)] + «D,, (7.27)

where « is an arbitrary constant. Of course, one could drop
this x®, term because of the presence of the arbitrary A
function inside ® but it is useful in order to find a group-
theoretical meaning to P,. Let us find the equation satisfied
by @,. First of all, ®, is divergenceless but P, is not:

d7®,=0, D,_,d7®,=[0,1/(2s —1),0]. (7.28)
This last equation is, by the way, compatible with (7.19).
Second, using (7.22) we find

(Qs—-l —(Q§—1>)st—IZ.§l=O’ (7-29)
and, since this function is divergenceless, that means that
inside k, thepD, D, _ | Z-{, term carries the same representa-
tion as £, (since (@°_,) = (Q:*1)). We denote this term
by ¢; and call §, what is left from &,.

What can we say about the action of Q, | — (Q%_,)
on £,? One computes

(Q1 — (2510,

1
= — —_— ), — 2,
[2(2s 1) (K 25— 1)2) K.

1
-2 D2s—1 ———)] 7.30)
(s+1)(2s )(K 25— 1)? (
Since ¢, is not divergenceless, we have to compare (7.30)
with (7.28)
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Ds—l aT'§4 = [0,1/(2S - 1)501
We see that , satisfies

(@1 — Q@5 N+ [2/(2s— DD, _, 37:£4 =0,
(7.31)

if we choose

k=1/(2s—1)%
Its group-theoretical meaning is then obvious and so is the
recurrence. So, if ¢=2/(2s+1), we have ®P=A
+ &3 + &4 with

5= [0, —2/(2s — 1),0],

Sa=[1/(2s — 1)%,0,(s — 2)/(2s — 1)?],
or

k=2,0-Zf, + 2,04,

1

+ WPDst— L+ D&+ A). (7.67)

Now, if ¢#2/(2s + 1), one cannot find a solution ® of
(7.20) inside E. Thus @ is not sufficient. Let us call &, what
is necessary in order to have a solution of (7.20):

S=0, + P,
This P, has to satisfy
(Qy — (27N,
={[(2s+ 1)e—2]1/(2s — 1) (c — 1) }®,, (7.32)

where &, is that particular solution (7.25) of
(Q,_ 1 —(Q:"1))®, = 0. We see therefore that &, does
indeed satisfy a dipole equation

(@1 — (@)@, =0, (7.33)

where &, is not equal to the general solution of (7.33) but to
the general solution of (7.32):

@, ={[(2s+ 1)c—2]/(1 —c)}T, (7.34)
= —[1/(2s—1DHNHQ_, —(@:" N 7',

In conclusion

k=Z2,0-Z¢ + 2,08, + [1/(2s— 1)*)pD, D, _ ¢,
+ D, ({4 + G4

with

Se=A+{lc2s+1)—2]/(1-0c)}T,

= —[2/(2s-1]Z¢,,

Sa=[1/(2s = D?)(V25, + (s — 2)py-Z¢),

L=(Q_,—(@:*M™!

(7.35)

—1 st—-lz.gl S+l ]
X v + /S
|2s—l 2t Ty T %
The tracelessness of & is easily verified. a

When ¢#2/(2s + 1), solutions of (7.3)-(7.5), repre-
sented by (7.6), are carrier states of the direct sum of two
indecomposable representations. The first one is obtained
with the choice that £, carries D(s 4 1,5 — 1):

Dis+2s5s—1)-D(s+ 1,5)->D(s+2,5—1)
¢ . (7.36)
D(s+2s5s—1)
The second one corresponds to the choice that §, carries
D2 —ss5s—1):

D2 —s5,s8)-D(s+ 1,5)-D(2 —3s,5)
\ @

D2 —s5)SD(l —ss5s—1)

(7.37)

The arrows accompanied by the gauge-fixing parameter
cindicate the presence in the solution of the term D, I", where
T is the solution of the homogeneous dipole equation

(@ — (@i =0.

Such solutions can carry the doublet

Dis+25—1)-D(s+25—1) (7.38)
or the triplet
D2 —58)->D(l —s5,5s—1)>D(2 —3s,5). (7.39)

(Note here the necessary presence of the operator D,.)

If cis equal to the value 2/(2s + 1), the indecomposable
representations (7.36) and (7.37) reach their simplest
structures (7.1) and (7.2) or “minimal” Gupta—Bleuler
triplets, thus named by reference to the Poincaré massless
representations.'>*! The third recurrence formula then cor-
responds to a certain tensor-product reduction, easily re-
vealed through the rewriting of the representation formula:

3,02, =k + [2/(25 — 1)]3,0Z¢,

+ [ZP/(ZS_ I)B]Dst—IZ'gl _Ds§4 _DsA
(7.40)

Let us recall that £, obeys Eq. (7.31); therefore, it carries the
massless indecomposable representations with spin s — 1
and gauge-fixing parameter ¢ = 2/(2s — 1). The latter pre-
cisely corresponds to the minimal structure. It is then appar-
ent that formula (7.40) illustrates both tensor-product re-
ductions:

D(-10)eDs+1s—1)=DG+1s—1)o[Ds+25s—1)-D(s+ 1,5)-D(s+ 2,5 — 1)]

o[D(s+1,5s—2)-D(s,s—1)->D(s+ 1,5 — 2)],

D(-1,0)8D(2—s5s—1)=D(2 —5s5s—1)

@ @

(7.41)

D2 —s5s5)->D(s+ 1,8)-D(2 — s,s))

D(1 —s5s5—1)
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D(3—s5s—1)-D(ss—1)->D3 —55—1)

® ® . (7.42)
D2 —s5—2)
{
The triplets (7.1) and (7.2), corresponding to ¢ = 2/ ——P p Z~§]= e _ 71—
(25 + 1) =c,, are associated with a chain of invariant sub- 25—1 7! T l—¢, l-—c¢,
spaces V;CV“CV’'“ in the space of solutions of (7.3)~ (7.47)

(7.5). More precisely, we designate by ¥ '“ an invariant sub-
space of solutions k square-integrable with respect to a cer-
tain invariant indefinite form32:

d’y
(kuky). =f—k*-Ack,
k2, o(1/p 450 14 K

where 4, _is a certain ¢,-dependent matrix differential opera-
tor. The solutions that carry the representation (7.1) belong
to such a subspace since all representations involved in the

(7.43)

triplet are unitary. We now designate by ¥ “C ¥V '“the invar-
iant subspace of tensor fields that are divergenceless,
d-k = 0. For such states, the form is positive semidefinite
even for solutions that carry the representation (7.2). On the
other hand, each element of the invariant quotient space
V'“/V“ can be put in one-to-one correspondence with the
nonzero divergence d-k of any state k lying in the comple-
ment of ¥“in V' Because of the intertwining rules, the
divergence of any solution of Eq. (7.3)~(7.5) obeys

(l_cs)(Qs—l —<Q§+l))a'k=0 (7-44)

and is thus a candidate to carry D(s+ 2,s — 1) [resp.
D(2 — 5,5)]. In the second case, k is not square-integrable
since the representation is not unitary. The double diver-
gencelessness d: (3 k) = Ohasbeen used. It is a consequence
of k' = 0and Eq. (7.3). For s = 1, the fields just considered
should be reminiscent of the scalar photons of Minkowski
QED.

In a totally symmetric way, the gauge fields k = D,A
obey

(1—¢)D(Q;_, — (@ ' NHA=0. (7.45)
They carry D(s+2s5—1) [resp. D(l1—s5—1)
—D(2 — 5,5)] as well. They form an invariant subspace Vf;
of ¥ “ made up with the zero-norm states,

(kk), =0 (7.46)

and, for s = 1, such fields should be reminiscent of longitudi-
nal photons.

Finally, the “physical states,” i.e., those carrying the
actual Urrep D(s + 1,s), are put in one-to-one correspon-
dence with the elements of the quotient space ¥ /¥ ;. The
form (7.43) is there positive definite and defines a norm
separately on each triplet.

It is interesting to characterize the invariant subspace
V* by a condition other than the divergencelessness
d-k = 0. Applying the divergence operator to the expression
(7.6) of k gives the result

L |vab—p+ 022,

d-k=
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The 1, were precisely introduced in the first recurrence
formula, Eq. (3.19). The present case, E, = s + 1, makes a
degeneracy appear: 7, becomes identical to 77_. Depending
on whether {; carries D(s + 1,s — 1) or D(2 — 5,5 — 1), 7,
now carries D(s + 2,5 — 1) or D(2 — 5,s5). The subspace V
is thus defined by the condition

n,=7m_=0. (7.48)

The state & itself can be put into a form that makes apparent
its “physical” content besides its “gauge” and “scalar” parts
[see Egs. (7.25) and (7.27)]:

k=3,0Z¢, — [2/(2s — 113,02,
+[p/(2s— 1D, y-Z,
— [p/(2s— 1)’1D,D, _,Z:¢,
+ [ —¢,)/(2s— 1)?]|D, 8-k

= [physical part] + [(1 —¢,)/(2s—1)*]D, d-k.
(7.49)

Therefore the gauge part only appears coupled to the scalar
part.

If ¢ is different from ¢, = 2/(2s + 1) but still not equal
to 1, there exists a corresponding chain V' CV°C V<. The
latter is provided with a certain invariant form (k,,k,), and
can be put in one-to-one correspondence with the minimal
chain, ¢ = ¢,, previously described. If k “is a square-integra-
ble solution of Egs. (7.3)—(7.5) for ¢ = c,, a similar solution
of (7.3)—(7.5) for c#c¢, can be built up from it as follows:

ke=k“+ [(e, —e)/(1 —¢)]D,
X(Q,_y — (@5 )1 ak”

=k®+ [(c, —¢)/(1—¢)]D,T (7.50)

[see Eq. (7.34) ]. Since defined up to the addition of a gauge
field, the application (7.50) can be considered as the identity

when restricted to the subspace ¥ *: ¥“= V. On the quo-

tient spaces ¥V'/V°and V'“/V ", Eq. (7.50) induces the
relationship

dk=[(1-¢)/(1—c)}dk" (7.51)

The first indecomposable representation pictured by
(7.36) is built up from the scalar massless Urrep D(2,0).
Indeed, the general carrier state k is constructed with &,
which carries D(s + 1,5 — 1). Now, the latter can be ob-
tained by applying the second recurrence formula (s — 1)
times. It is necessary here to put the coefficient 1, equal to
zero at each step of the induction process.

The same method is used to show that the second inde-
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composable representation (7.37) is built up from the scalar
massless Urrep D(1,0). There £, carries D(2 — s,s — 1), the
second recurrence formula is applied (s — 1) times with
t_ = 0 at each step of the construction, and thus D(1,0) is
reached.

Let us finally examine the case ¢ = 1. Equations (7.3)
and (7.5) are now “fully” gauge invariant, since k = D,{ is
the solution of it for any traceless tensor { homogeneous of
degree N — 1. Here, the double-tracelessness condition
k " = Oacquiresits entiresignificance and k displays aslight-

ly modified representation in terms of tensors of lower rank.

Proposition 8: If c is equal to 1, a solution k of Eqgs. (7.3)
and (7.5) can have the representation

k=Z202Z( + 2,08, + D&, (7.52)
where £, carries D(s + 1,s — 1) [resp. D(2 —s,s — 1)] and
&= —1[2/(2s—1)]Z-&, carries D(s+ 1,5—2) [resp.
D(3 — 5,5 — 1) ]. Moreover, §; has to obey the auxiliary con-
dition

N+=2-37¢, —p(s+ Dy Z¢,

—[p/(2s—1)]1D,_,Z-¢,=0. (7.53)

Now £, only has to be traceless and homogeneous of degree
N — 1. With such a representation, trace and divergence are
given by

k'=¢+2p7"'97¢,, (7.54)

dyk= — 2002t — (O, — QTN (159)
Putting it another way,

k = kpyy,. + DL, (7.56)

with
§:=0, dkp =0.

VII. TWO-POINT FUNCTIONS AND THE PROPAGATION
PROBLEM

Some of the main features of the irreducible or supposed
indecomposable representations previously described are
well understood in terms of the invariant two-point func-
tions or homogeneous propagators in biunivocal association
with them. The two-point invariant function is an analytic
tensor function X of the variable z = py'y’ and the quantum
field propagators are determined in terms of some of its
boundary values.'"'® The separation between two points y
and ' is spacelike if |z| > 1, timelike if |z| < 1, and lightlike if
|z =1

We understand that propagation is confined to the light
cone if and only if X is meromorphic with polesatz= + 1,
because, in this case, the vacuum expectation value of the
quantum-field commutator vanishes except on the light
cone. On the other hand, branch cuts at z= + 1 imply “re-
verberations,” that is, propagation in the interior of the light
cone.

For a given irreducible representation D(E,s), the
function K §’(z) is a solution of the corresponding wave
equations (3.3) and (3.4), expressed in terms of the variable
yory'. It can be defined as follows:
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K@) =3 ki(»kt(y), (8.1)
I

where {k,} is a set of solutions of the wave equations that is
complete for the D( E,,s)-carrier space. It will thus be built
up by using the same recurrence formulas as those given in
the previous sections: since all the calculations can be drawn
back to the scalar case s = 0, we shall review the main results
for the latter situation.

A. Scalar representations—general case

The scalar propagators K {2’ =K. obey the eigenvalue
equation,

Q()KE(, = Ey(E, — 3)KE,’

or, in terms of the variable z, are solutions of the differential
equation
— Ey(Ey—3) [ Kg, (2) =0.

2
(22—1)5—+4zd (8.2)

2 dz
The Gegenbauer functions C¥?%; (z) and C /> ;(z),”® are
the solutions of the above equation for any E,,. They can be
expressed as Legendre functions of the first kind:

Kg (2) < (B — 3)(Z — 1)L _, (2)exp( — 2imnE,).
(8.3)

For a complete study of their singularities, we refer to the
discussion of Fronsdal in Ref. 11. Note the existence of the
two solutions in relationship with the Weyl equivalence
between the two representations D(E,,0) and D(3 — E,;,0).

B. Scalar representations—integer case

Now let us suppose that E; is a negative integer — 0.
The representation D( — 0,0) is finite and irreducible and
the corresponding two-point function is the Gegenbauer pol-
ynomial of degree o:

K__(2) cC¥2). (8.4)

For a positive integral value E, = o, the classical re-
sult?® about special function analysis exists. The two-point
functions K, (z) possess simple poles at z= + 1 for any
0>0. Moreover, they have logarithmic branch cuts at
z= + 1for any o>3.

Poles and singularities are displayed by the following
formulas:

K@) =z2Z-1"" (8.5)

is the homogeneous propagator for the massless Urrep
D(1,0),

Ky(2)=(Z-1"" (8.6)

is the homogeneous propagator for the massless Urrep
D(2,0),

Az+ B
|

z—1
z+1’

(8.7)
for o> 3, is the homogeneous propagator for the scalar Urrep
D(0,0). Here, A =0and B =1 if o is even, whereas 4 = 1
and B = 0 if o is odd. The polynomial D, is given by

K, (z) = +D,,_4(z)+%K3_aln
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92) (2q+3 —4k)(2k2— (2¢+ Dk + (g +2)?)

(8.8)

D,(z) = 2

K=o 2k+1)(g+2—k)(g+1—-2k)(g+2—2k)

We remark the role played in Eq. (8.7) by K, _ <« CY?,,
propagator of the unique Firrep D(3 — 0,0) Weyl-equiva-
lent to D(0,0).

C. Representations with nonzero integral spin s—
general case

Applying within its domain of validity the first recur-
rence formula a finite number of times enables us to express
the propagator K {(z) in terms of K (z). Therefore, the
latter will alone carry the possible poles and singularities of
K2 (2).

D. Representations with nonzero integral spin s and
integral energy E, out of the range 2 —s<Ep<s+1

When E,, is a negative integer smaller or equal to — s,
i.e, E,= — o —s, 0>0, the propagator of the correspond-
ing Firrep is polynomial. The first recurrence formula makes
its calculation possible in terms of Gegenbauer polynomials
C 32 ( Z) .

s+ o

When E, is a positive integer greater or equal to s + 2,
ie, E,=s5+ 0, 0>1, the corresponding representation
D(s + o,5) is unitary and irreducible. Its propagator can
also be determined, through the recurrence formula, from
the propagator for D(s + 0,0). In particular, poles and
(logarithmic) singularities appearing for D(s + o,5) are the
same as those encountered in the D(s + 0,0) case and speci-
fied by Eq. (8.7). The result below follows.

Proposition 9: The homogeneous propagator K ¥ ,(2)
for the Urrep D(s + 0,5), o integer >2, possesses poles at
z= +1 for any o>1. It has logarithmic singularities at
z= + 1 for any ¢>3. Poles and singularities are displayed
by the formulas

K9, =8P@2)/(2 - 1>, (8.9)
S(s)(z) 1 z—1

K® — i — K@ 1 ,
sho(2) EEETIE +t3 3-s5-0(2) L

(8.10)

for 0>3. Here S & (z) is a tensor polynomial in the z variable
and K§* | is the propagator of the unique Firrep repre-
sentation D(3 — s — a,5) Weyl-equivalent to D(s + 0,5).

We insist on the fact that, if >3, there exist two other
representations Weyl-equivalent to the latter, namely
D(s+ 2,5+ 0 —2)and D(1 — 5,5 + o — 2), which are infi-
nite and nonunitary. In this context, the case o =2 is re-
markable since there exists only one representation, namely
D(1 —s,5), Weyl-equivalent to D(s + 2,s). This fact pre-
vents the appearance of the logarithmic term in the expres-
sion of the propagator K (%) , (z), a feature obviously shared
by the propagator K { (z) for D(1 — s,5).

Another way to demonstrate this property is to make
use of the second recurrence formula repeated s times with
p, =0for D(s+ 2,s) and p_ =0 for D(1 — s,5). We thus
reach the D(2,0) propagator for the former and the D(1,0)
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CY2 5 (2).

I
propagator for the latter, and these functions possess single

poles at z = 4 1 only.

A further remark is important for the sequel.
_If we consider the generalized gauge fields
k=2, ,_,,6 where { carries D(s + o,5), their corre-
sponding propagator is meromorphic at z = + 1. Indeed, it
can be written

¥G+o-2) — (s)
K —'@s+o—2,s'@;+a—2,sKs.:-o(Z)

___§(Z)/(22_1)2(s+a—2)+l, (811)

where S(z) is a certain tensor polynomial in the z variable.
The disappearance of the logarithmic singularity is due to
the specific annihilating property of the differential operator

'@:+a—2,::

‘@S+0—2,sK§sls—a(z)=0- (8.12)

E. The representations D(1—s,5+0-2), 0>3,5>0

Here, we enter into the “forbidden” range for E,;. In Sec.
V, we saw that the carrier states of the indecomposable rep-
resentation

D3—s—o0s)-D(l —s5s54+0-2), (5.17)

0>3, are the generalized gauge fields k = 2, ,_, ¢, £ be-
ing itself a solution of the inhomogeneous equation

(Q—A(Q:*NE=“D(3 —5—0,s) state” (8.13)

supplemented by d-§ =0, (X’ —~ (N—0+2))=0. These
states { carry the triplet

DB3—-s—o0s5)-D(l —s54+0—-2)
-D(3 —5—o0,5). (5.16)

Now, the general solution of (8.13) is given in terms of low-
er-rank tensors through a recurrence formula adapted from
the first one. The corresponding propagator, denoted by
I{ ., isalso determined through this recurrence proce-

dure. When applied s times, the latter leads to the resolution

of the nonhomogeneous equation satisfied by I\ . =1, _,

[Q0+U(U—3)113_U=K3—a» (8.14)

or in terms of the z variable,

2
[(zz —1) d_zz+4z;,d;—q(q+ 3)]<P(z) =C%@.
(8.15)

Here, wehaveputg =0 — 3and/; _ ,(z) = ¢(z). A partic-
ular solution of (8.15) is

@(2) =(4z+B)/(Z2— 1)+ E,_,(2)
+1C Y% (2)In(2* — 1), (8.16)
where 4 = 0 and B = 1l if gis even whereas4 = land B =0
if g is odd. The polynomial E, (z) is given by
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E

W3 (29+3—4K)2Kk*— 29+ Dk+a +5¢+7) an

(D=3

o (k+1)(2¢+5-2k)(g+2—-2k)(g+1-2k)

From the above expression, we can conclude the following.
Proposition 10: The invariant two-point function of the
indecomposable representation,

DB3—s—o0s5)-D(l—s5s54+0—2)
—-D(3 —5—o0,5),

o an integer >3, possesses poles and logarithmic singulari-
ties at z = + 1. Poles and singularities are displayed by the
following formula:

152, ,(2)=

S92 /(2 -1
+3K$ _(2)In(Z - 1), (8.18)

where S (z) is a tensor polynomial in the z variable.

Therefore, it can be said that the propagator for the gen-
eralized gauge fieldsk = 2, +o—2:6 doesnotitself contain
any logarithmic singularity, since 7, ,_,, %!, ,_,, can-
cels the Firrep propagator K, (2):

9, ()=

)25+l

’ (s)
S+a—2,x s+a~2.sI3—s—a'(Z)

=85(2)/(# -1 (8.19)

where S ((z) is a tensor polynomial in the z variable.

2, 1
)=

F. The representations D(s+ 2,54 0— 2), ¢>3,8>0

We saw in Sec. V that the corresponding wave equation
is satisfied by the possibly indecomposable representations

Dis+25+0—2)-D(s+ 0,5) (5.11)
or
Ds+254+0—2)-D(l —s5+0—2). (5.12)

Applying the first recurrence formula o — 3 times leads
down to the carrier states for the indecomposable represen-
tations

D(s+ 25+ 1)-D(s 4+ 3,8)
or
D(s+2s+1)-D(1 —s,s541).

Hence the singularities of the propagators for the former
doublets are the same as those carried by the latter represen-
tations. We are thus led to examine the following case.

G. The massless representation D(s+1,s)

The third recurrence formula can be used as well to
build up the propagators for the indecomposable representa-
tions (7.36) and (7.37) corresponding to a certain choice of
the gauge-fixing parameter ¢ different from the value 1. The
formula (7.6) expresses them in terms of the meromorphic
propagators of the representations D(s+ 1,s— 1) and
D(2 — 5,5 — 1), up to the addition of gauge-field propaga-
tors corresponding to the terms DA and D.I" [see Egs.
(7.12) and (7.13) ]. Here, we reach the ultimate proposition
of this paper.
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C¥2 1 (2). (8.17)

i
Proposition 11: The homogeneous propagators

K{,,(z) and KD, ,(z) corresponding to the indecom-
posable representations (7.36) and (7.37), respectively,
possess poles of multiplicity 2s + 1 at z= + 1. They have
logarithmic singularities at z= + 1, afforded by their cou-
pled “scalar-gauge” parts, except if the gauge-fixing param-
eter ¢ is put equal to ¢, = 2/(2s + 1). More precisely,

Kf,ss)+1(z)
=P (2)/(Z ~ 1)*+' 4+ DD K5 (2)
+{le(2s+1) —2]/(1 —)}D,D;L{~V(2),
(8.20)
K1 (2)
P2/ (22— 1D '+ DD I~ V(2)
+{le(2s+1) —21/(1 —)}D, DL~ V(2).
(8.21)
Here, P{* and P} are polynomial in the z variable; K ¢,V

and / §’_‘S" are given by (8.9) and (8.18), respectively: their
own logarithmic singularities are eliminated under the ac-
tionof D.D .

The propagators L {*~ " and L {; — ! are the ones corre-
sponding to the “dlpole” equation ( 7.13): their own loga-
rithmic singularities are not eliminated under the action of
D.D:.

From the above expressions, it can be understood that,
at least for one precise choice of the gauge-fixing parameter,
the states propagate on the light cone only. Now, the diver-
genceless states do not depend on the gauge fixing. They
propagate on the light cone only, whatever the choice of c.
Since, on their own, they carry the indecomposable repre-
sentations

D(s+1s5)-D(s+2,s—1)
or
D(s+ 1,5) > D(2 —s,5),

their corresponding propagators are meromorphic. We can
then answer the question asked in Sec. VIII F. The propaga-
tors for the supposed indecomposable representations
(5.11) and (5.12) are meromorphic in the z variable and do
not show any logarithmic singularity.

It would be interesting to extend this study to the most
general indecomposable representation (6.12) and (6.13).
For this purpose, further recurrence formulas are needed,
which do not enter into the scope of this paper.

IX. CONCLUSION

Physics on de Sitter space has been truly rich with possi-
bilities during the past decade. One of the last but not the
least examples being the remarkable continuity linking the
Osp(N |4) supersymmetry to the Poincaré one through con-
traction.*?
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It seems to us to be a good opportunity to make more
complete the de Sitter glossary concerning the free states and
related propagators. However, it should be stressed that the
advantages proper to the de Sitter geometry (semisimple
kinematic group, discretization of the continuum) have to
be moderated by the complexity of writing down the states
(compare with the simplicity of the exponential functions of
the Poincaré kinematics!).

This work should be extended very soon by considering
the half-integer spin case,* and by deepening the conformal
invariance subjacent to the massless theories,*>** in continu-
ation of previous works treating the lower-spin cases.'*>*¢ In
particular, a conformal interpretation of the value ¢, =2/
(25 + 1) will be given. In this context, we study the role
played by the nonunitary representations D(o,s),
2 — s<0<s, lying vertically in the Weyl diagram (Fig. 1)
between the massless representation D(s+ 1,s) and its
Weyl-equivalent D(2 — s,5).

On the other hand, the present paper has to be consid-
ered as one of these preparing to deal with really physical
problems, like the de Sitter version of the nonlinear Max-
well-Dirac system.
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APPENDIX A: SOME COMMUTATION/INTERTWINING
RULES

Allinvolved tensor fields are symmetric and transverse.

1. Commutation rules involving the operator £,0.Z

The expression 2,0-Z¢, § of rank s — 1, is defined by
Eq. (3.5):

(i) trace,

(2,0-Z5) =2,0-Z5' 4+ 22,
(ii) divergence,

3 (2,0-ZL)=32,0-Z3¢

—p2YZ§+ Z:(@ — p(s + 35

(iii) generator L 33,

L ;2(21®'Z§) =2,0-Z(L 1(1‘,3_ D&y

+i2,(Zz0, — Z,0;)¢E;

(iv) operator Q,,

0.320:Zf =20-Z(Q,_, +25)¢

+ 20D, y-Z{ — 42,0Z-¢;

(v) operator D, ,,

D, 320-Z;=320-ZD{— 2y Z3,0(.

2. Commutation rules involving the operator (2,2 ")
The expression 2, 9(Z,Z")§, & of rank s — 1, is defined
by Eq. (3.6). These rules also involve the operatoro(Z,Z '),
defined by Eq. (3.7), the operator Q. (Z,Z’)
=T3,w(Z,Z"),and the operator & (Z,Z"), defined by Eq.
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(3.22). Here, we shall shorten the notation by dropping the
(Z,Z') dependence. We have

(1) trace,

(Zm8) =2m5" + 298
(ii) divergence,

3 (Zm) =2 3¢+

+pEZZ¢—ZZ"0);

(iii) generator L {3,
LZ(ZmE)

=32 (L g ") +i[(VaZs —ppZ)Z’

—(VaZ —ypZ ) Z + (8amp — 8pMa) 165

(iv) operator Q,,

Q3G =3 mQ_; + 2s+ )

— 20,5 — 42,075

(v) operator D, , |,

D, \Zm5=Z2nDJ.

3. Commutation rules involving the operator .(Z,.2°)
The rules are
(1) trace,
Q8 =Q,_,'+26-&
(ii) divergence,
IQH=0Q, 332 mdé
— 203, y5 &+ 20(s + 2)Z, yq-&
+ (s +2)7°9 +p(s+2)
XI(Z'Z§—ZZ'¢);
(iii) generator L {3},
L. = QLG ) — 2 &5 ")
+ 29O + iZ1( ¥, 85 — y56,)
X (7°3¢ + pZ, y7°6)
+iT32,(0,6; — 0z0,)¢;
(iv) operator Q,,
0.0,6 =Q,(Q_, +25—-2)§
=22 Q1 —s(s— 1))
—22m(2,04")
— 43,00 ¢ + 43,0y ¢ — 2D, %L,
(v) operator D, ,,
Do 8 =0,D,f — 29D.5 + 22,08

4. Miscellaneous commutation rules involving the
second-order Casimir operator Q,

The rules are
(i) operator y-Z,
Q. yZk=yZ(Q, + 8k —2p"'TZ - 3k;
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(ii) operator TZ-3=V,,
OV k =V (Q — )k -2y Z(Q, —s(s + 1))k
—20D.Z-k — 4py-Z2,0k’ +2T32,0-Z 0°k;
(iii) operator Z-,
0.\ Z:k=2Z-(Q, —28)k + 2y Z3k+23,Zk";
(iv) operator 7(Z,Z"')",
O _1mk=mn(Q —2(s— D)k —2wk +22Z,9k’;
(v) operator o(Z,Z") ",
Q. w0k = (Q, —25)k
—29°(Q, —s(s + 1) +2)k
—6Z k' +22(V,Z' -V 2)k’
— 43,0k’ +2(yZ'V, -y 2V, )3k
4+2T2(®-ZZ'-(3k)—O-Z'Z-(3°k));
(vi) operator &,
Q.Fk=%0Q.k—4pD .7 k.

5. Commutation rules involving V»
The rules are ‘
AT (V k) =V, (07 k) +p(s+2)Z°k
—py'Z3dT -k —p2,0-Zk',
D,V =V D —pyZDJS
- (s—1)2,0-Zf +22,0Z-¢.

APPENDIX B: THE OPERATORS # AND 7*
1. Construction of #

The following results make precise the entire structure
of 7 ;. As afirst step, let us consider the scalar finite irredu-
cible representation D( — 0,0) and its absolute ground state
¥°. . Any combination of sums and tensor compositions of
D, and =,0 whose action cancels y°, will also annihilate the
entire carrier space because of the intertwining rules (3.11a)
and (3.11b). For any positive integer <o + 1, let us recur-

S(r)(o,) = 23t ((r_ 1)/2)'(U/2)'
(— W ((a—r)/2)

n=r=2 ((g—r+ k—1)2+ i M(r—k

sively define the polynomial operator &, (o) through the
equation
PP y%, =[rol/(o—-rlp 0% y° ", (B1)
where ©  designates the one-rank tensor with components,
0,,=0, +i0,,

and @ %" stands for its r th-tensor power.

The right-hand side of Eq. (B1) is clearly a symmetric
transverse tensor field of rank 1 &, , (¢') merely realizes the
isomorphism between two different carrier spaces of
D( — 0,0): scalar fields and r-rank tensors. And the annihi-
lator of the carrier space of D( — ¢,0) is clearly obtained by
puttingr=o0+ L

'@o+1,o = -@o+1,o(0')- (B2)

Proposition A: The differential operator Z , (o) is poly-
nomial in the successive symmetrized tensor powers

D;E:]—zr)@et ®etD ® (r— 21)
o< [r/2],
where

0°¢ = 2,0(2,0--(2,00) )
N

(B3)

t

and D 2*is an (abusive) abbreviated notation for
Ds+p— 1D3+p—2 ) D .

s

Equation (B3) results from the commutation rule (3.12).
The polynomial coefficients S {” (o), defined by

Z 0(0) = IS (g)@2D -2,

o<t<[7/2]
are themselves polynomials of degree ¢ in the variable o.
They are determined from the recurrence relationship

(B4)

S (o) =8"(a) +2r(c —r+ 1S3 (),
(B5)
with the initial conditions
S =0, if t>[r/2],
‘ [r72] (B6)

S¢ =1,

The general expression of these coefficients is not imme-
diate:

—1)/2 — i)

xy > 3

=08 =Ii iy=i,_1 k=1 ((0’—
23772 ((r—1)/2)(a/2)!
(—Hi(o— /2’

r/2 (U) lf r= 2t.

Here, x! stands for I'(x + 1).
The fact of putting r = o + 1 does not bring noticeable
simplification except in the following cases:

(0/2)1)?

Sioi D 0) ""23(¢7+l)/2(( 1)!) , if o is odd,
Y
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, ifn=r—21, (B7)

r+ k)24 i Nr— k)72 — i)

St D(g) =22[(a/2)]? if o is even.

Next, the knowledge of the D( — ¢,0) annihilator 7, 4
allows one to obtain straightforwardly the D( — s — a,s) an-
nihilator #, ..

Proposition B: The differential operator 2, is
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polynomial in the successive symmetrized tensor powers
@° D2t =, 0<ig[(o+1)/2],
with coefficients equal to those of Z, _ ,:

‘@s+a+l,s= P_‘S§a+”(0')

Ot (o + 1172}
X@e'Dpg+— (B8)
The proof is mainly based on the fact that D, , | is pre-

cisely the D( — s,5) annihilator Z, _, ;. To show this, it is
sufficient to check the equation

D,g' xp™'Z,(8+py)n(Z*,Z %) =0,

where g' |, an(Z*-,Z*) is given by (3.24). A simple re-
currence argument then leads to

D, 8" ,xp 'Z,(8+p) [9(Z*,Z*)]** =0,
(B9)
and to the more general commutation rules

D2f g <Dl g )%
= [Min(p,s) ]!zMin(p,s) g DPPy, .
It follows that
Dror1s8 5o % EqMinsor 1) 8 5P or10¥3 =0 0
2. Examples of operators 7, , and 7},

The tensor & is a symmetric, transverse, traceless tensor
of rank s, and & is a symmetric, transverse, (o + 1)th-trace-
less tensor of rank 5 + ¢.

Forthecaseo=1({'=0,k" =0),

(1) Z,1.:6=D 116,
(ii) 2%, k=3"k— (p/2)D,k’,
(iii) P2 1P, 1:6= — (@ — (@3N
Forthecaseo=2({'=0,k"=0),
(1) 2, 2,6=D, 2D, §+ 207 2,0,
(il) P2, ,k=3"9"k+ (p/4)Q, — 25(s + 5))k'
— (p/2)D, 3"k’
+(p*/8)D,D,_ k" +}p2Ok”,
(iil) %42 P4 2:6 =3Q — Q5™
X(Q, — QXN
Forthecaseo=3 ({' =0, k" =0),
() Z,3:6=D, 3D, ,D, ,§+ (8/p)2,8D, , (¢,
(ii) 2%, ;k=3T3T3"k + (p/2)
X(Q, — 2(s* + 65+ 1)) "k’
— (P/8)Q, —2( +4s+2))D.,k"
—(p/2)D 3" 3Tk’
+ (p*/8)D,D,_, dT-k"
+3p2,03 k" — Y4 p?2,0D,_,k"
— (p>/48)D,D, _\D,_,k",
(il) 22,32, 5.6 = —3(Q, — Q"))
X(Q: — Q1N
X(Q: — 2(s* + 2))¢.
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Starting with the Wigner—Eckart theorem about the OSP(1,2) irreducible tensor [J. Phys. A:
Math Gen. 20, 5423 (1987)], the OSP(1,2) Wigner operator and Racah operator are studied,
their general definitions, orthogonality properties, and coupling laws are given, and the
connections between them and the corresponding operators of the SO(3) algebra are
established. The results obtained in this paper are a natural development of the authors’ theory

on the OSP(1,2) irreducible tensor.

I. INTRODUCTION

For the Lie superalgebra OSP(1,2), we have studied the
coupling laws of two and three irreps, calculated and dis-
cussed the Wigner coefficients and Racah coefficients,' put
forward a general definition for the irreducible tensor, strict-
ly proved the Wigner—Eckart theorem about the matrix ele-
ment of an irreducible tensor, and presented methods for
calculating the reduced matrix elements of the irreducible
tensor.”

We intend to study the OSP(1,2) Wigner operator and
Racah operator in this paper. This is a significant work. On
one hand, by using the Wigner operator, we can give a fuller
description of the irreducible tensor. For instance, we can
expand the action of any irreducible tensor on a basis in
terms of the Wigner operators; the coefficients in the expan-
sion are just the reduced matrix elements of the irreducible
tensor. This result shows that the action of an irreducible
tensor on a basis is uniquely determined by its reduced ma-
trix elements. On the other hand, by using the Wigner opera-
tors and Racah operators, we may express the theory on
coupling of representations in the operator form totally.

The contents of the paper are arranged as follows: In
Sec. II, we give a general definition for the OSP(1,2) Wigner
operator, decide its orthogonalities and coupling laws, study
the relations between the OSP(1,2) Wigner operator and the
SO(3) Wigner operator, and establish the concept of the
OSP(1,2) Racah invariant. In Sec. III, we give a general
definition for the OSP(1,2) Racah operator, decide its or-
thogonalities and coupling laws, and discuss the relations
between the OSP(1,2) Racah operator and Wigner opera-
tor. One can see that the theories on the OSP(1,2) Wigner
operator and Racah operator in this paper are in agreement
with the basic ideas and results in Refs. 1 and 2.

Before studying the OSP(1,2) Wigner operator and Ra-
cah operator, we list some fundamental results about the
OSP(1,2) Wigner coefficient, Racah coefficient, and irredu-
cible tensorin Refs. 1 and 2. We are to use them in this paper.

(1) The OSP(1,2) Wigner coefficients (37 37:37) are de-
fined as follows:

(U. 2J,

M .
Ml M2 :{I)IZJI, 1>|2J2’M2>a (1.1a)

'ZI’M>= z

MM,
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( — 1)(2J| — M,)(2J;, — M2)|2J1’M1> |2‘,2’M2)

=§(_

1)2(1. +4,—NRI- M)
2, 2, ?J)
M),
X (Ml M, m)FM)
where M = M, + M,. They have the orthogonalities

z ( _ 1)(2!, —M)(2J, - M,) (2Jl 2"2 Z’)
M, M M, M

<Gy 30 o)

2+ =DM
( )(|+z ) )6_]1

(1.1b)

(1.2)

5MM"

3 (- 1)2Ui+ 2= NI ) (2" 2J, U)
) M M, M

(u, 2, u>
M M M

= (= 1) —MIQ2~ Mg

MM} MM; ’

(1.3)

and symmetries

(2.1, 2, ’-’)=(_1)f.(7~’2 2, U)
M, M, M M, M, M
27

where

fi = n(L L) + 20, + I, — DARD
+ AIDAQRT,) + AMDAMS,),

L= B + 20, + T, = ) (2 — M)
+ (20, — M) (2, — M),

£y =n(J, 0 M,/2) + [A2T) + 1]
X (200, + 1, — D) + A(MD],
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Ja=n(J, M,/20) + [A(2);) + 1]

X[2(J;+J, =) + A(M))]
[see Ref. (1), for the meaning of n( )].

(2) The OSP(1,2) Racah coefficients R,.,.
= R(JJ,JJ5;J'J ") are defined as follows:
[2J.M ). =2R,~J.|ZJ,M)J,, (1.8)

£

( _ 1)2("2+-,_1"J~)2(J|+J"‘J)I2J’M>J~

—_ ; ( _ 1)2(','+JZ_J')2(J‘+J“_J)RJ~W|2J,M>J:.

(1.9)

They have the orthogonalities
z ( _ 1)2(!2+-’3—J')2(J|+J" —J)RJ"J'RJ”!’
Lt

— ( _ 1)2(1.+Jz—J')2(J'+J,—J)6J,!, , (1.10)
z ( _ 1)2(1.+Jz—J')Z(J'+J,—J)RJ~J’R!_J’
s

=(— 1)2(.’2+J;—J")2(J.+J~__J)(SJ”!” (1.1D)

and symmetries (for simplicity, we replace J,, J,, J, J5, J,
and J ", by a, b, ¢, d, e, and f, respectively)

R (abcdiefy = ( — 1) R(badc;ef) (1.12)
= ( — 1)%(cdab;ef) (1.13)
= ( — 1)*R(acbd, fe) (1.14)
= ( — 1)%R(aefd;bc), (1.15)
where
g =Aa)2(a+d+e+f)+A(2b)2(b+c+e+f)
+2(a+b+e)2(a+b+c+d),
8 =A2d)2(a+d+e+f)+A(2b)2(b+c+e+f)
+2(b+d+f)2(a+b+c+d),

g&=20b+c+e+f)A2b) +A(2c) + 1],
g, =n(edc) +n(bdf) + [A(2a) + 1]12(b+c+ e+ f).

(3) The OSP(1,2) irreducible tensors T2/ are defined as
follows:

(g Tar) = €M) (UM'|q, |2/, M) T3, (1.16)
where g2, (m=0,+ 1, +2) are the generators of the
OSP(1,2) algebra, and €(2/,M') = (2J,M'|2J,M’) is the
norm of the left vector. The Wigner—Eckart theorem with
respect to the matrix element of the irreducible tensor T372 is
G(N,M)<2J9M IT%{’:|2J1:M1)

2J, 2J.
— (— 1)/ ||T™ ( 2 Z’) RTRT
( YT || T 2J)) M, M, M (1.17)
where
=20, + 1, =N -M)
+ (2, — M) (2, — My) + A(M)A(M)),

€(2J,M) = (2J,M |2J,M ) is the norm of the vector |2J,M )
generated from the action of T37 on the basis |2J,M,), and
(2J||T*"}|2J,) isareduced matrix element of the tensor T7:.

2554 J. Math. Phys., Vol. 29, No. 12, December 1988

Ii. OSP(1,2) WIGNER OPERATOR
A. Definition of the Wigner operator

As we know, the irrep J of the OSP(1,2) algebra is
4J 4+ 1 dimensions. Corresponding to the irrep J, we can
define 47 + 1 independent irreducible tensors, while every
one of them has 4J + 1 independent components. We denote
all these operators by the Gel’fand notation

27+ A
4J 0),
2+ M

and call it the OSP(1,2) Wigner operator, where
2J =0,1,...; AM = 2J,..., — 2J. For convenience, we denote
simply the Wigner operator by the symbol (4J,0) some-
times.

The Wigner operator of J=1 is the fundamental
Wigner operator; it is composed of nine operators

2.1)

2 1 0

2 0),(2 0),(2 0),
2 2 2
2 1 0

2 0),{2 0),(2 0),
1 1 1
2 1 0

o
o
(=)

The components of the OSP(1,2) Wigner operator may
be classified as odd or even. We denote the degree of the
Wigner operator by A(M). The degree of the Wigner opera-
tors of even 2J — M is A (2J).

The OSP(1,2) Wigner operator is defined as follows:

2J+ A
4J 0) [2j,m)
2+ M
yj u 2j+A) .
= —lf( 2 , y
( ) m M m+M |2/ +Am+ M)
2.2)

where
=T -M)2j+A-m—M)
+ (2f —m)(2J — M) + A(m)A(M).

From the definition (2.2), we see that the Wigner opera-
tor {4J,0) transforms the vectors in the space j into that of
the space j + A/2, and the transformation is impossible un-
less |2J —2/|<2j + A<2J +2j, that is, j must satisfy
4j>2J — A. If the condition is not satisfied, the Wigner oper-
ator (4J,0) will turn the space jinto 0. Generally, one names
a vector set annihilated by an operator as the null space of the
operator. The null spaces of the OSP(1,2) Wigner operator
(4J,0) are decided by

4j<2J — A. (2.3)
In (2.2),letj = 0, m = 0, A = 2J; one gets a simple and
interesting result:
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4J

M)y =(4J 0)10,0). (2.4)

U+M

B. The relations between the OSP(1,2) Wigner
operators and SO(3) Wigner operators

We have shown' that there is a simple proportional rela-
tion between the OSP(1,2) Wigner coefficient and SO(3)
Wigner coefficient. We may establish a similar relation for
the Wigner operators of the two algebras.

In the usual form of representation, the bases of the
SO(3) irrep i are denoted by |im), where
m=ii—1,.,—1i i—m are always integers; and the
SO(3) Wigner coefficients and Wigner operators are de-
noted by (,4,%.) and (211% 4 0), respectively, and the defin-

ition of the latter is®

I+A
21 0)im)=ClL i/ lli+Am+M),
I+M
(2.5)

where M,A = I.I — 1,..., — I. However, in the new form'? of
the OSP(1,2) representation, the bases of the SO(3) irrep i
are denoted by |2i,m), where m = 2i,2i — 2,..., — 25;2i — m
are always even. Correspondingly, the SO(3) Wigner coeffi-

cients and Wigner operators should be denoted by C22/2

and (413] 1 5,0), respectively, and the definition (2.5) should

be changed to

U+ 6
41 0) |[2im) = CEUZ+S 12i 4 S,m + M),
A+ M
2.6)

where §,M = 21,21 — 2,..., — 2I. In Ref. 1, we have given the
relation between the new form and the usual form of the
SO(3) Wigner coefficient.

In (2.2), substituting the SO(3) Wigner coefficient for
the OSP(1,2) Wigner coefficient, introducing the SO(3)
Wigner operator, and considering the fact that |2j,m) are the
bases of the SO(3) irrep j (if 2f — m is even) or j — } (if
2f — mis odd), we can establish the connections between the
OSP(1,2) Wigner operators and SO(3) Wigner operators.
According to the odd and even properties of 2j —m,
2J—M,2J— A,and 2j + A — m — M (see TableI), we can
divide these results into eight kinds as follows:

27+ A
() (4 0) [2j,m)
27+ M
= (— ])AmAann (2j+ J+ A2 + 1)1/2
2i+A+1
2J+A
“\¥ 0) Zim).,
2+ M s
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TABLE I. The relations between the OSP(1,2) Wigner operators and
SO(3) Wigner operators are displayed according to eight kinds of cases
shown in this table. ( +, even; —, odd.)

Yy-m 2U-M W-A  Y+A-m-M
1 + + + n
2 - - - _—
3 + + _ _
4 _ _ + +
> + - + _
6 + _ _ N
7 - + + -
8 - + M N
2J+A
@) (& 0} |2/,m)
W+ M
= (= 1)Amaen (2j+J+ A/2 +£)1/2
2i+ A
2J4+A-1
X 4-,—- 2 0 |2]"‘ l,m)s,
2J+M-—-1 s
2J+A
2+ M
= (= 1)AQD +AmAD) (J— A2 +£)V2
2+ A
2J+A-1
“\¥ 0} [2im).,,
2+ M .
2J+A
4) (& 0) [2j,m)
U+ M
= (= 1)@ +aminn ( J—A/2 )1/2
2i+A+1
J+A
X 47 -2 0 '2]“’ l,m>s,
2J+M-—1 s
2.7)
27+ A
Gy \¥ 0) [2jm)
W+ M
= (= 1)@ +AmA0D (J+ A/Z)V2
2i+ A
2J+4A-2
\¥ -2 0) [2,m),,
W+M—1 |,
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2+ A

(6) (4 0) |2j,m)
2+ M
= ( — 1)Amian (2_1'— J+ A2+ %)1/2
2i+A+1
2+A-—1
X\V-2 0) [2im),,
W+M-1 s
2J+A
(7 (& 0) |2j,m)
U+ M
= (— 1)AmAtn (i-—_]i_A_/Z_)uz
%+ A
2JJ+A
“\¥ 0) |2 1Lm),,
2+ M R
2J+A
(8) {4J 0)12j,m)
U+M
= (= 1)) + 1+ AmABD (fiA_/Zi_‘z)‘”
2j+A+1
2J+A+1
“\¥ 0) |2~ 1m,,
U+ M N

where the subscript s stands for SO(3).

C. Adjoint operation of the Wigner operator

In order to express properly the orthogonality relations
of the Wigner operators, it is necessary to introduce an ad-
joint operation ( + ). Our definition is as follows:

274+ A i
a7 0) |2,m)
2+ M
— ( - l)i(m—M)/l(M) + n(J,4/2,0) + n(J,M/2,0)
%j—A 2 y),
2i—Am—M). 2.8
X(m —-M M m 1% m ) (2.8)

Applying the symmetry relations (1.4)-(1.7) of the
OSP(1,2) Wigner coefficients, we easily prove that the ad-
joint operation defined in this way has the following proper-
ties:

27+ A ¥
4J 0) =(— Hraen + 11(2J — A] + 22D AM)
W+ M
2J—A
X\ 0}, (29
2-M
2J4+A i 27+ A
LY 0 =\4J 0). (2.10)
+M J+M
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D. Orthogonality relations of the Wigner operators

Applying the adjoint definition (2.8), we can express
the orthogonality properties of the Wigner operators in very
simple and beautiful forms:

U+ A
z ( — l)n(J,M/Z,O) 4J 0
M W+ M
27+ A f
X\ 4 0
27+ M
— ( . 1)"(J’A/2'O)I6AAr, (211)
27+ 4 ¥
Z (— 1)ra20 (45 0
8 W+ M
27+ A
x<u 0
24+ M
= (— "IMROLS (2.12)
27+ A
S (= DY~ "e(2),m)(2jm| (4’ 0
= WM
2J4+ A ¥
x(4J 0) [|2j,m)
2+ M
—_ ( _ 1)2]-—M+ n(J,A/2,0) + n(J,M/Z’O)‘SJJ'sAA'aMM'a
(2.13)

where [ is a unit operator. The relations (2.11)-(2.13) coin-
cide with the orthogonality relations (1.2) and (1.3) of the
OSP (1,2) Wigner coefficients; it is not difficult for the read-
er to check this.

E. An arbitrary irreducible tensor can be expressed in
terms of the Wigner operators

Comparing relation (2.2) with (1.17), one can see that
the Wigner operator defined by (2.2) has the characteristics
of the unit irreducible tensor; the relation (2.2) is actually
the Wigner—Eckart theorem about the unit irreducible ten-
sor. Hence we can express the action of an arbitrary irreduci-
ble tensor T3/ on the space j in terms of (4J,0) as

Ta2im)y =Y (2 + AT ||2))
A

2J+ A
X (4] 0
2+ M
The relation above shows that the action of an irreducible
tensor on a given space is only determined by its reduced
matrix elements.
The relation (2.14) may be rewritten in an operator

form as
27+ A
27+ M

G. Zeng and X. Yuan
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T =S RY(8) (4]
A
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where R% (A) is an invariant operator whose result on the
basis |2j,m) is irrelevant to m:

R¥(A)|2j,m) = R"™™(A,))|2j,m).

It is not difficult to see that, in fact, R ">/ (4, j) is a reduced
matrix element of T3;.

F. Coupling laws of the Wigner operators

In order to study the coupling laws of the OSP(1,2)
Wigner operators, we define a new operator R 2%2°%°, which is
called Racah invariant. Its definition is

R222%\2j,m) = R>2(2))|2jm), T=p+o, (2.15)
where
RE(2))
—_ ( — 1)2(a+ b—c)(2c— 7) + (2a — p)(2b— )
XR(j—1/2,ajb;j — 0/2,), (2.16)

which is a new notation for the OSP(1,2) Racah coefficient
and satisfies the same orthogonality relations as the Wigner
coefficients in the form.

It is necessary to point out that R 2%2°2(2/) has two im-
portant properties: (a) the movement property,

R22929(2j) = (— 1)*R* 2 ) (2j— 1),
k=A(2a)(2a +2c —0)
+ A(2b)(2b + 2¢ —p)
+2(a+b—c)Ra+2b—17), (2.17)

which may be proved by using the symmetry relations of
Racah coefficients; and (b) the asymptotic property

2b 2::)
o 7/’

lim R222(2j) = (2a (2.18)
J= e P
which will be proved in Appendix A. This result asserts that
the OSP(1,2) Wigner coefficient may be obtained as the
asymptotic limit of the OSP(1,2) Racah coefficient.

From the orthogonality relations (1.10) and (1.11) of
the Racah coefficients, we can prove that the Racah invar-

iant operators have the following orthogonalities:

(2a — p)(2b — o) P 2a2b2c R 2a2b2c
Z(_l) £ Rpa--erc-r
X4

= (= Hers-O-nf5 (2.19)
2( _ 1)2(a+b—c)(20—‘r)Rzaibichfziblic
=(— 1)(2a—p)(2b—a)15pp‘5aa“ (2.20)

Now we work out an operator from two Wigner opera-
tors (4a,0) and {(45,0):

2a 2b 2¢
T2c(0 ) — ( _ l)i(a)l(ﬂ) ( )
y (P azﬁ a B ¥
2b+ o 2a+p
X{ 4b 0)(4a 0).
2b+ B 2a+a

(2.21)
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Interchanging a and b in the Wigner coefficient, and com-
paring the relation (2.21) with the definition of the product
of two irreducible tensors,” we can see that T3°(0,p) is also
an irreducible tensor. Since the Wigner—Eckart theorem
about the matrix element of T,’,‘(a,p) can be written as
€2+ r,m + Y)(2% + ,m + ¥|Ty (0,0)|2,m)

= (2 + 7||T*(0,p)||2)e(2f + Tm + ¥)
2c+ T

0)|2j,m),

2c+y
Tf,‘(a,p) may be expressed in terms of (4c,0),

X{2f+7m + y|{ 4c

2¢+T1
T¥(op) =R2%(4c 0).
2c+7y
Here we have introduced the Racah invariant R 22>, From
(2.21) and (2.22), one has

(2.22)

2+ 7
R,Z,aibic 4c 0
2c+y
_ 2 ( = 1YHAB (2a 2b 2c)
xB a B v
2b+ o0 2a+p
x{ 4b 0){4a 0). (2.23)
26+ B 2at+a

This is the coupling law of the Wigner operators.
From (2.23) and the orthogonality relation (1.3) of the
Wigner coefficients, we obtain

2b+o 2a+p
4b 0){4a 0
2b+pB 2a+a
=2(_1)1,R,2)a(27b3c
2c
2c+T1
2a 2b
x(: 5 2Y (4¢ 0), (2.24)
4 2c+y
where
ti=2@+b—-c)2c—y)+ Ra—a)(2b—PB)
+ A(a)A(B).

Applying the orthogonality relations of the Wigner op-
erators and that of the Racah invariants, from (2.23), we get
once more

2a262¢

por
2b+o0
_ 2 (=1 (2a 2b 2c) 4b 0
@By a B 7 2+ 8
2a +p 2c+7 ¥
X {4a 0){4c 0), (2.25)
2a+a 2c+y
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2c+71

8. ( 4c 0
2c+y
f(2a 2b 2
_ (__l)l_,RZaibic( )
az,,s ? a B v
o
2b+o 2a+p
X ( 4b 0){4a 0), (2.26)
26+ B 2a4a
where

ty =A(a)A(B) + n(c,y/2,0) + n(c,7/2,0),
ty=2(a+b—¢c)2c—171)

+ (2a —p) (2b — ) + A(@)A(B).
A simple and clear method for verifying the correctness

of the relations (2.23)-(2.26) is for the two sides of them to
act on the basis |2j,m). For example, from (2.24), we have

(Zj 2a 2j+p>(2j+p 2b 2j+1')
m a m+4a/\m+a B m+y
2a 2b 2
= R('a' l,b;'-I-—p—,)( )
LR+ bi+ T e 5y
x(zj 2y +T). (2.27)
m y m+yv

This relation is in accord with the relation (4.5) in Ref. 1.

i1l. OSP(1,2) RACAH OPERATOR
A. Definition for the Racah operator

The Racah operator is associated with the Racah coeffi-
cient. The OSP(1,2) Racah operator is denoted by

2a+p
4a or, (3.1
2a+o
where p,o = 2a,2a — 1,..., — 2a; its definition is
2a+p
4a 0¢ |(2,,22)2m)
2a4+o0
= (~0R(jaih—Zii+ 1)
2 2
X (2, + p,2, — 0)2);m), (3.2)

where
f=QRa—p)2(ji+j+)) +0+pl+ (2a—0)
X2(jy+i2+0) + (2a = 0)A(2),)
+ A(2), — 0)A(2a) + 0.

The OSP(1,2) Racah operator may also be defined in
terms of the OSP(1,2) Wigner operators, that is,
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2a+p
4q 0
2a+o0
_ E (— 1)n@ar20
2a+p 2a4+0 ¥
X{ 4a 0) ©(4a 0) ,
20+ a 1 2a +a 2
(3.3)

where (44,0); (i =1,2) is the Wigner operator only acting
on the space labeled by i. The relation (3.3) coincides with
(3.2); this assertion may be proved by having the two sides
of (3.3) act on the basis | (2,2/,)2j,m) of the coupling space.
It should be noted that the action of the direct product of two
Wigner operators on the direct product of two spaces follows
the rule

({44,0), ® (4a,0),) ‘Zjl!ml)lzjme)
= ( — 1)HDAm(44.0),12j,,m,) (4a,0),|2i,,m).

The Racah operator of @ = } is the fundamental Racah
operator; it is composed of nine operators

2 2 2
2 Op, 12 O, 42 0¢,
2 1 0
1 1 1
2 O, §2 0, 12 0r, (3.4)
2 1 0
0 0 0
2 0, 12 0, 42 0
2 1 0

We could use a similar method for studying the relations
between the OSP(1,2) Racah coefficients and SO(3) Racah
coefficients in Ref. 1 so as to discuss the connections between
the OSP(1,2) Racah operators and SO(3) Racah operators,
but we ignore this procedure because of its complication.

B. Adjoint operation of the Racah operator

In Sec. 11, we have defined the adjoint operation of the
Wigner operator. Referring to the adjoint operation of the
Racah operator, we use the definition

2a+p )
4a 0t |(21,2,)2),m)
2a 40
=(—1 f’R(' — £ Gjjnjij g—)
( ) S ) 2 J1J2 + 2

X|(2j, — p:2j> + 0)2j,m) (3.5)
where
f'=n(a,p/2,0) + n(a,0/2,0) + (2a-0)A(2), + 0)
+ A(2/,)A(2a) + 0.

The adjoint operator { }' may be expressed in terms of
the Wigner operators, too, that is
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2a+p ¥

4a 0
2a+0
p— Z( —_ l)n(a,a/z,O)
2a+o 2a+p '
X{ 4a 0} ol4a 0) .
2a 4 a 2 2a 4+« 1

(3.6)

The reader may verify by himself the concordance of the
relation (3.6) with (3.5).

Using the adjoint properties (2.9) and (2.10) of the
Wigner operator, we easily prove that the adjoint operation
of the Racah operator has the following properties:

2a+p ¥
4a 0
2a+o0
2a—p
=(_1)/1(2a)(p+0+1)+2a+P+‘7 2a 0t,
2¢a — 0
3.7
2a+p t 2a+p
4a 0t | =14a ot. (3.8)
2a+0' 2a40

C. Orthogonality relations of the Racah operators

Using the adjoint operation in the above, we can give
some simple and beautiful orthogonality relations for the
Racah operators:

2a+p ¥ 2a+p
2( — 1)ar/20) $ 44 0} 14a 0
e 2040 2a 40
=(—-1"""20115,,, (3.9)
2a+p 2a+p '
2( _ l)n(a,a/z,o) 4a 0 4a 0
i 2a+o0 2a + 0
=(—1)"0e]s, (3.10)

2jl + 2}2 . s - . . . . N .
( — 12 +h=De((24,,2,)2,m){(21,22) Zjsm|

2j = {2fy — 25}
2a' +p' 2a+p i
X14a 0}14a 0
2a +0 2a 40
X ; (21192]2)2.},’")
= ( — l)n(a,p/Z,O) “+ n(a,0/2,0) + 2a + a‘spp' ao'o" 6“- R (3 1 1)
where I @ I is a direct product of two unit operators. Obvi-
ously, the relations (3.9)-(3.11) are very similar to the or-

thogonality relations (2.11)-(2.13) of the Wigner opera-
tors.

D. Coupling law of the Racah operators

We directly point out that the OSP(1,2) Racah opera-
tors have the following coupling law:
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2b+o0 2a+p
4b 0t {4c 0

2b+ B 2a+a

. _ 2c+ T

- z (— l)h,R:a?’bicR (Zzaiébic 4c o},
¢ 2c+y
(3.12)
where

hy = [A2a) + 2a — a] [4(2b) + 26— B]
+(Qa—a)(2b—PB) +2a+b—c)(2—1y),

+ —
and R 22’2 and R 2"’ are two Racah invariant operators

defined as

+
RETT1(21022)Ym)

= R222(21)(21,2,) 2),m), (3.13a)
R 227 (2),,2,) 2j,m)
=R 2% (2),)](2),,2,)2),m). (3.13b)

They satisfy the same orthogonality relations as (2.18) and
(2.19), that is,

+ +

(2a — p)(2b — o) P 2a2b2¢c py 2a2b2¢
Z(”—l) ’ Rpcr'era‘r
po

_ ( . 1)2(a+b-c)(2c—‘r)15“,, (3014)
2a+ b—c)(2e— )+2 2b2!.‘+2 2b 2
g(_l) Rpapr’a’r
={— 1)‘2"_”)(2"""’16‘,#5,, (3.15)
and
2;8( _ 1)(2a_a)(zb-ﬂ)§ iaébici 2362
= (— Harb-oQe-ni§ (3.16)
Z (— 1)2(a+b—c)(2c—y)R iaébicR ‘nggzic
=(—1)®-D-Bp5 S (3.17)

Using the two sides of (3.12) to act on the basis
| (2/1,2/,)2j,m), we can prove that the coupling law of the
OSP(1,2) Racah operators coincides with the following sum
rule of the OSP(1,2) Racah coefficients:

Z R(abcd;ef)R(db'cd ;c'e)R(ba'ed ;b 'a)

= R(a'bc'd;b'f)R(fa'cd 'ic'a).
The proof of (3.18) is given in Appendix B.

(3.18)

+ —
From the orthogonalities of R 2*2° and R 2% and the

coupling law (3.12), we easily obtain
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2b+o0 2a+p
> (- l)"=R 24202 1 4b 0f1{4a 0
i 2b+B 20+ a
2c+7
=R§“},”§‘ 4c 0r, (3.19)
2+7y
B 2b+o0 2a+p
> (= D*RIYY {4b 0r{4a 0
=8 26+ B 2a+a
. 2+ T
=R22" {4c 0¢, (3.20)
2c+y
20+ 71
4c 016,
2c+ 7y
— z ( l )b. R ,230‘27b’2rc R Za2b2c
po
2b+o 2a+p
x{4b 0}14a 01, (3.2
2648 2a + «
where

h, = [A(2a) + 2a — a][A(2b) +2b— )
+ (2a—-a)(2b—B) + (2a —p)(2b - 0)
+2(a+b—-c)y+1),
hy=[A(2a) + 2a — allA(2b) +2b—B],
hy=[AQ2a) +2a — a][A(2b) +2b—B)
+ Qa—py(Zb—0)+2(a+b—c)(2c— 7).

IV. CONCLUSION

We have established a comprehensive theory on the
OSP(1,2) Wigner operators and Racah operators that is
quite similar to the corresponding theory of SO(3). It can be
believed that the former is a simple and direct generation of
the latter to Lie superalgebras.

APPENDIX A: WIGNER COEFFICIENT AS THE

ASYMPTOTIC LIMIT OF THE RACAH COEFFICIENT
For the SO(3) algebra, it has been proved that if
Wik (D =1QI-28+ 121" + 1)}”’

with ¥ = @ + B, then® one has
lim W (D) = Clgl. (A2
For the OSP(1,2) algebra, let
RV ()
=(— 1)(21;—;7)(2!,-«0) + 20+ Iy~ TR —T)
XR(J — /2, J — 0/2,J "), (A3

with 7= p + 0, we now prove a similar relation, that is,
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N #
lim R 222" (20) = ( 2 W Y ) (A4)

I p o T
First of all, we write the OSP(1,2) Wigner coefficient in
the product form of two factors:
(211 2‘,2 U) (J J2 f) Cc?h 21221
M M, M I, MMM
The first factor is named as the scalar factor; the second one
is the SO(3) Wigner coefficient. The values of I (1;) equal J
(J)if2J—-M (2J; — M) is even, and J —§ (J; — 1) if
2J — M (2J; — M) is odd. The values of the scalar factor
J+ %)

are
(:Ifx J, J)__(JJ'; VA
1 J =3 L= J
:(;’_I_‘L{zi”:_’_i_l_)l’z
2+ 1 ’

(AS)

5, J)_(j; J2J+§_>
e I e L2 A AR
— (1) x(Js +J,—=J )"2 ,
27+ 1
A A J)__ J, J—%)
=3 L=V Jz‘“%f‘“%

(jl JZ
1 LY

) >@1k1Q

J—J, + L\ '
= —1“2’-)(-———-——' 2) . (A6
( ) Y, (A6)

Letting J— w0, and reserving J, limitedness (hence
J1— o), we easily see that the scalar factor has the following
asymptotic properties:

A J)__

im (7 217) =

JMJ AN (AT)
. 1 2 -

Jim (1, I, J—g) Or, -

Jy— o0

Now, we write down such a relation between the
OSP(1,2) Racah coefficients and Wigner coeflicients:

R (2], 2" z.r)
TV\M, M" M

= 3 (= 1)20a+ A= IR = M) + QU — M) (2, — M)
MMM
X(ZJ, 27, ZJ’)(ZJ’ 2J, U)
M, M, M/)\M'" M, M

., M, M)’

Making all the OSP(1,2) Wigner coefficients in (A8)
the form (AS) and introducing the SO(3) Racah coeffi-
cients, we obtain

(A8)
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ken=(

-1
J) — )2+ =TT 1) 20, = D205 — 1)
"I 1211

J I
><(,‘ ,2 )( : ( )[(21 + 1)L + D" WALILIT"). (A9)
1 2
Further we replace all the Racah coefficients in the relation (A9) by the new notations (A1) and (A3); then we obtain
( _ 1)2(1.+Jz—J’)2(J’+J3—J) +2(Jz+J;-—J")2(J.+J"—J)R %{J —J.)2(J 7 )2(.1 7 (2J)
Jy J” oragge  pe
= » (— 1)2(Jz+J:—J 22U —IT)+2(, =12 - 1)
G )z
J, LI\’
(Il : )(I’ },)( )W;I—I; ri- 1 (D). (A10)
1 2

Wenow let I = Jin (A10), and make the limit transition of J— . We require thatp = 2(J' — J,),0 =2(J — J’), and
7=p + 0 =2(J — J,) are limited. Hence we must let J,,J ' — o0, while letting J— .

When making the limit transition above (I = J, J— « ), according to the asymptotic behavior of the scalar factor, we
must let J; = J, in the relation (A 10), and notice that only the term of I’ = J' does not equal zero in the sum of (A10). This
limit transition brings the relation (A4).

Relations (A2) and (A4) show that the Wigner coefficient of SO(3) and OSP(1,2) may all be obtained as the asymptotic
limit of their Racah coefficients.

APPENDIX B: DERIVATION FOR THE SUM RULE (3.18)

In order to derive the sum rule (3.18) of the Racah coefficients, we first study the coupling of the three irreps J,, J,, and J,
and consider the coupling coefficient of the following form:

S(JIJZJJ3;JIZJ13) = é.(Z‘I’A{)Jl, <(2Jl’2"3)2"l3’2‘,2’2‘,’M | (2"192‘12)2'112!2‘,3,2J,M )s (Bl)

where €(2J,M), | is the norm of the final state vector generated from the coupling way of 2J,,2J, —2J,3; 2J;3,2J,—2J.
Similar to the Racah coefficients,’ we can express S in terms of the Wigner coefficients as

S= z (_ l)f(z‘ll 2"2 2"12)(2"12 2"3 u)(z‘,l 2"3 2"13)(2‘113 2"2 U) (B2)
MMM, M, M, M,)\M,, M, M/\M, M; My y/\M; M, M ’
MIZMIJ
where

[=2(L+ T =N —=M) + (W, — M) (W3 — M3) +2(J, + I3 —J13) (23 — My3)
+ (U, — M) (25 — M) + A(M)A(M,).

Applying the symmetries of the Wigner coefficients, we can further prove the following relation between S and R:
S50 1 13) = (— l)j'R(JZJl‘,J:!;JlZJl:«))’ (B3)
where
[ =n(0JJd,) + AQDAQRDL) + 20, + 1, + J1)A (1) + n(J 0 ) + A(213)A(2);) + 2(d15 + T, + DARD).

Now, we study the coupling of the four irreps J,, J,, J;, and J,;, and consider the coupling coefficient of the following form:
< (ZJUZJZ)2J12’2J3’21123’2J4’2J9M I (2"192"4)2J14’(2J2v213)u23’2"’M >6( 2J’Al).l..lz, ’ (B4)

where €(2J,M), ,, is the norm of the right vector generated from the coupling way of 2J,,2J,—2J,4; 2J,,2J; —2J,3;
2J33,2J14— 2.
Inserting the completeness conditions of the state vectors with an indefinite metric into (B4), we have

( (2‘,1’2‘,2 ) 2"12’2‘]3’2‘1123’2J4’2‘I’M |2‘,l’ ( 2"2’2']3 ) 2"23’2‘1123’2"4’2"’M >€( 2J’M) Sasdias
X <2\’11 (2‘,292',3 ) 2"2392‘,]23’2',4;2"9M | (2‘1192',4)21149 ( 2"2:2',3 ) 2"2392‘,)M )6( 2"9M) Jiadas
= Z ( (211:2‘12 ) 2"1 292"3’2‘,123:2‘,4,2‘15M | (2"1,2‘,2 ) 2"12’2"4,2‘,124’2"392"’M )6( Z‘IsM) Ji2d 124

"l24
x ((2"192‘,2)2‘112’2‘14’2'1124’2"332"3M | (2"1’2"4)2114’2"2’2‘,12492‘,392")M )G(ZJ,M)J“Jm
X ((2J1,204) 214,202,214, 203,20, M | (2,20 ) 214, (202,205) 223,20, M Ye(2I M), ... (B5)
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From the definitions for S and R, we can see that relation (B5) means

RV 1239330 12023)S (T o3l 5 1230 14) = z S(J 1230530 1239 124)S(T I 124 550 12010 ) R (U1 T 330 1240 23) - (B6)
-

t24

Inserting (B3) into (B6), and substituting the letters a, b, c,d, e, f,a’,b’,¢',and d ' for J 4, J,, J, J3, J 1245 S35 I 1y S 125 J 123, and J
respectively, we obtain the sum rule of the Racah coefficients:

Z R(abcdief)R(db'cd’;c’e)R(ba’'ed ;b 'a) = R(a'bc'd;b'f)R(fa'cd ' c'a). (B7)
e
r
'G.-J. Zeng, J. Phys. A: Math. Gen. 20, 1961 (1987). 3L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Phys-
2G.-J. Zeng, J. Phys. A: Math. Gen. 20, 5423 (1987). ics Theory and Applications (Addison-Wesley, Reading, MA, 1981).
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The solutions of the equation  + yy + By* = 0, where B is a free parameter, are investigated.
For B = }the equation is linearizable through an eight-parameter symmetry group and is
completely integrable. For B # }only two symmetries subsist, but through a dynamical
description the analytical asymptotic solutions and their behavior are given according to the

value of 8 and according to the initial conditions.

1. INTRODUCTION
The differential equation
Y +w+y/9=0 (1)

arises in the study of the modified Emden equation'~

g+a(t)g+y(t)g"=0
in the case m = 3. It is also found in the study of univalued
functions defined by second-order differential equations.
Equation (1) is a member of the Riccati hierarchy and can
be transformed into a linear third-order equation by means
of the standard transformation y(x) = 3u'(x)/u(x). It is
also a member of the class of equations represented by

Y+ 3a(x)py + b(x)y +ad*(x)y?
+e(x)y* +d(x)y +e(x) =0.

This is the general form of a second-order ordinary differen-
tial equation linear in the first derivative that can be trans-
formed into a linear second-order equation by means of a
point transformation.*® As a consequence Eq. (1) possesses
the algebra sl(3,R).

By virtue of its interest in both mathematical and phys-
ical contexts, we here make further investigations into Eq.
(1). To provide interpretations based on an understanding
of physics, we recast the problem as the classical mechanical
problem of a particle moving in a one-dimensional potential.
Further, we modify (1) so that the Newtonian equation of
motion is taken to be

i+ ad+Bg =0. )
We are interested in the behavior of the solution of (2), in
particular for varying values of 8. One question to be ad-
dressed is the following. For 8 = §, (2) is linearizable, pos-
sesses eight symmetries, and is completely integrable. Con-
sequently, we could expect that this remarkable
mathematical property corresponds to an important phys-
ical one appearing (or disappearing) for this value which
consequently would appear as a critical one. By setting the
problem in the context of classical mechanics, we shall see

* Present address: C.E.A. Centre d’Etude de Vaujours, DFI/FN, BP No. 7,
77181 Courtry, France.
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that there are other values of 8 for which something can be
deduced about (2) analytically and that the critical value of
B is not . This is something that was not detected in the
symmetry analysis referred to above since, for all values of
B # 4, there exist only two symmetries, i.e., the Lie point
symmetry analysis distinguishes between S= jand B # }
only. We note that Ince’ includes (2) in his detailed discus-
sion of second-order nonlinear equations. However, our
treatment is differently based.

In the case # = },application of the Riccati transforma-
tion ¢ = 34/u to (2) gives the third-order equation

i=0
with solution
u(t) = Ay + At + At 2,

whence
34 24.¢
q(t)=_._(._1_i‘_2_)2, g(0) =41,
A0+A11+A2t AO (3)
, 3(24,4, — A7)
9(0) = —rr———.
A5

From (3) we see that only 4,/4, and 4,/A, matter and
consequently we take 4, = 1.

The asymptotic behavior of ¢(f) depends not only on
the value of 4, but also on the existence and sign of the roots
of 1+ A, + 4,t* = 0. If there is no positive root for this
equation, the asymptotic behavior (1— o0 ) of g(7) is

q(t) = 6/¢,
q(t) = 3/t’

4270 (3)
A2 = 0.

On the other hand, if a positive root exists, then the solution
exhibits an explosive character [i.e., g(¢) goes to infinity in a
finite time]. The problem is to obtain the boundary curves
for the initial conditions.

If 4, <0, the equation 1 + 4,7 + A,¢? has real roots of
opposite sign and consequently one is positive leading to an
explosive solution. If 4,>0, two cases occur. For 4,>0,
cither there is no root or the two roots are negative and con-
sequently no explosive solution can take place. For 4, <0, if
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the roots exist, they are both positive and the explosive solu-
tion takes place.

Consequently, the boundary curves are

A, =0, for 4,>0, (3"

A} —44,=0, for A,<O. (3"
Taking into account (3), (3”) and (3") can be written, re-
spectively, as

Ay =0= go= —3473.
This relation together with

go=34, = go= —iqg-
Taking into account the two last relations of (3),

A} —44,=0= go= — 1.

Figure 1 gives the sign of 4,, 4,,and A =4} — 44, and
shows that the boundary curve for initial conditions leading
to an explosive solution are given by the two half-parabolas.

In fact, we are going to show the generalization of this result
for0<B<}.

Il. SELF-SIMILAR ANALYSIS

For B taking on general values, we may use rescaling® to
determine the asymptotic behavior of ¢(#). The transforma-
tion

4, g =a"g)

(t,q)— (?,ﬁ: t=a
is self-similar if
B—-24=2B—-A4=3B.
This system has the consistent solution B = — 4 with 4 ar-
bitrary. We note that this tranformation corresponds to the
second of the Lie point symmetries associated with (2),*
viz.,

a 3
G, =t _q9
L

FIG. 1. The boundary curve between explosive and nonexplosive solutions
is the half-parabola g,= —g3/6 for g,<0 and the half-parabola
go= — qa/3 for g;>0in the case = }.
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as can be seen by setting a = (1 + €) ~'. As (2) is autono-
mous, the other symmetry is obviously
_d
==
We will see, later on, that the combination of these two sym-
metries will give both the asymptotic behavior and the classi-
fication of the initial conditions. The elementary invariants
of the similarity transformation are®

E=qt, n=qt* (4)
Noting that

4

dt

we take as new variables the invariants £ (for position) and
o =7 + £ (for velocity), so that Eq. (2) becomes

G,

= %(qt2 +qt) = %(77 + &),

a4 _
o~ oY
%: (B—Eo+ (£2—2£—PE), (5b)

where 6 = log ¢ is the new time.

Equations (5) are interpreted as a system of first-order
equations of motion in the new phase space-time (£,»,0) of a
particle moving under the influence of a velocity-dependent
drag force (3 — £)w and a force derivable from the potential

V(&) =4BE* +£°— &> (6)
We note that the velocity-dependent drag force is damping
for £ > 3 and accelerating for £ < 3.

lli. BEHAVIOR OF THE POTENTIAL WITH VARYING 8

For the convenience of later reference, we categorize the
behavior of the potential as S varies downwards. This is pre-
sented in Fig. 2. We first note that V(&) is always zero at the
origin £ = 0.

POTENTIAL V({)

B-1/8 B-19

25 25

0
8 B-1110
4
o]
-4
0O 4 8¢ 2 0 2 ¢

FIG. 2. Plots of the potential V(&) =} BE* — | £ + £ * for different values
of B.
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V(&) has a single minimum at £ = 0. It is strictly
monotonic increasing for |§ | - .

V(&) has asingle minimum at £ = 0, a stationary
point of inflection (dV /dE =d*V /d{* =0) at £ = 4, and
now it is monotonic increasing for |£ |- c.

m: The stationary point of inflection of the poten-
tial splits into a maximum at £,, in [3,4] and a minimum at
&, in [4,6].

: V(£) has minima at £=0 and £,, =6 and a
maximum at &, = 3. Note that the potential reads
V(&) = (£ — 6)%62/36 in this peculiar case and that it is
symmetric about the maximum &,, = 3. Moreover, the ex-
tremum £,, is the limit abscissa between a damping and an
accelerating velocity-dependent drag force.

lg;_B_: ZI The maximum £,, is in [2,3] and the mini-
mum £, isin [6, + o [. As B0, £, moves towards the
limit value 2 and the minimum &,, behaves as 1/8. The po-
tential is strictly monotonic increasing for |£ | > co.

: The maximum is at £,, = 2. The potential is
strictly montonic increasing in [0,2] and strictly monotonic
decreasing in ] — o0, 0] andin [2, + « [.

V(&) has a minimum at £ = 0 and two maxima
on either side of the origin. The maximum on the left of the
origin moves in from £ = - oo for § increasingly negative
and away from £ = 2 to the right. From this rather detailed
analysis, it appears that the critical values of S are f = 0 and

B=}

IV. SOME SPECIAL SOLUTIONS

Before we discuss the qualitative behavior of the motion
for varying S, we consider some special solutions. Elimina-
tion of @ from Eqgs. (5a) and (5b) gives

m‘;—“§’=(3—§)w+§2—2§—/9§3. 7
An ansatz of the form

o =ay+ a,£ + a,t? (8)
for the solution of (7) yields the following possible solutions:

(i) @=26—4£% B=} &)

(i) o= —64+36—1£% B=} (10)
(ili) o =€+ a,t? B= —a,(2a,+1). an

[It is a trivial matter to show that a finite polynomial solu-
tion to (7) can only have the form of (8).]

We may then solve (5a) for each of these solutions. We
also list here the corresponding solution of the original equa-
tion (2).

Case (i),
E=6/(K+e?), g=6t/(K+1?); (12)
case (ii),
§=3K+6e" _3K+6t_ 6(LK+1)
K+e Kt+t> —K4+QK+0?’
(13
case (iii),

E= —¢/(K+a,e”, q= —1/(K+an); (14)
where in all cases X is a constant of integration. We see that
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solutions (i) and (ii) are almost identical. As expected, they
are particular forms of the general solution (3) for the 8 = }
case.
We consider case (iii) and the condition S
= — a,(2a, + 1) in more detail. The expression for the po-
tential (6) is now

V(€)= —(ay/4)Qa, + 1)E* + 2 —J &3, (15)

If we are interested in real valued solutions to (2), the inter-
pretation in terms of a, is valid for < |since for 8> §, a, as
given by (11) becomes complex. Hence the special solution
(iii) is only to be considered for 5< }. We recall that it is this
value of B that separates two distinct regions of behavior of
the potential. From Fig. 2 and Sec. I1I we see that the poten-
tial V(£) has three extrema, §, =0, £, =¢£,,, and £, = £,,,
for 0 <8< }. These extrema are obtained from Eq. (6) and
they are given by

(BET—&+2)6,=0 (i=0,1,2). (16)

In fact, Eq. (11) is transformed into Eq. (16) if we take
— 1/a, as the new variable. Consequently, introducing the
solution &,, and &,, of Eq. (16) for a given /3, we can write
the special solution (iii) [Eq. (11)] as

oy (§) =61 —§/8x),
0, (§) =6(1—-£/8,).

Equations (17a) and (17b) show clearly the important role
that will be played by the special solution (iii). The curves
oy (£€) and w,, (£), interpreted as initial conditions in the
phase space (&,0), are frontier curves for different types of
time evolution. Indeed, the solution w,, (§) describes a par-
ticle arriving with a zero velocity on the top of the potential
hill (with possible subsequent bifurcations) while, for the
solution w,,, (£), the particle falls in the potential bottom and
has a zero velocity at £ = £, (consequently playing the role
of an attractor solution). These two curves are exactly the
ones we found in the case § = } (cf. the discussions of the
end of Sec. I where we found that the boundary curve for
bifurcating initial conditions is indeed the self-similar solu-
tion going through the point £ = §,, = 3).

It is interesting to understand why such simple special
solutions can be obtained and to see the roles of the two
symmetries G, and G, (see Sec. II) which for our equation
exists for all values of 5.

In fact, the introduction of the new phase space (£,0)
makes the system autonomous (i.e., invariant under the
symmetry d /d6). To compute the boundaries, we must con-
sequently solve Eq. (7). In our case, the solutions of this
equation can be obtained by using the symmetry G, [i.e., the
invariance of the equation in (g,¢) space]. Let us consider at
the initial time # =1 the conditions ¢=¢,,, §= — £,.,
which correspond in the (§,) spaceto £ =§£,,, » =0. In
this (£,w) space, nothing happens and the particle is motion-
less. Of course, in the (¢,4) space we have an evolution with

q=§m/t’ = _§m/t2'
Let us consider the system at t = T. Since the system is invar-

iant under time translation, we can reintroduce the values
£,./Tand — &,,/T?as new initial position and velocity and

(17a)
(17b)
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bring back the clock to ¢ = 1. The new & and o are conse-
quently

§=¢6./T, o= —§,/T*+§£,/T.
Eliminating 7, we indeed obtain
o=£(1-£/6,) (18)

and we have obtained the parabola going through the equi-
librium point (£,,,0). In the same way, we obtain the pa-
rabola going through the other equilibrium point (£,,,0).
These boundary curves appear consequently as prolongation
of the two equilibrium points obtained by going into the
(¢.9) space (where evolution takes place) and coming back
to the (£,w) space.

V. PAINLEVE ANALYSIS OF EQ. (2)

We perform the Painlevé analysis of (2) as follows.
First, we determine the dominant behavior by substituting

q(t) xap(t —t,)" (19)
into (2). We find that n = — 1 and all terms are dominant.
This reflects the fact that (2) is invariant under the scale
change t—at, g—a~'q as we saw already in the self-similar
analysis of Sec. II. The value of a, is determined from the
solution of

2a, — a} + Bag =0, (20)

i.e.,

ay=(11V1—-88/2B&B8=(ap—2)/a;  (21)
since a;,7#0. We have two particular solutions correspond-
ing to the two roots. They are ay (z—t,)"'and
a; (t—1)" ! These solutions fail to be real for 8> 1. Inthe
second step of the Painlevé analysis we determine the reso-
nances (Kowaleski exponents). Writing

g=ay '+ar ', T=t—1t, 22)
and substituting into (2) we find that
4+ (ag—3)r+ (a,—4) =0, (23)

so that  takes the values , = — 1, which always occurs in
such analyses, and r, = 4 — a,,. Since the resonances are re-
quired to be integral and the leading behavior is determined
by (¢ —t,) ", we have that 4 — a, must be a non-negative
integer, i.e., 2,e{3,2,1,0, — 1,...}. Consequently this speci-
fies the value of 8. For a;t we have the sequence of permissi-
ble (a5 ,B) tobe { — n, — (n + 2)/n*,neZ*} and, for a4,
{3.4; 2,0;1, — 1}, where in the case of (2,0), 'Hdpital’s rule
must be used.

By way of example, the solution fora; =3 and = §
is

2

gty =3(t—1t,)"' +a, (t—t,)+ —(t—1)?

03 a4 a
—FU— B ) -~ ,])s...] _

Performing the summation, we obtain
g(t) =3(t—1)""+3a/[3+a,(t =], (24)

where a, is arbitrary. We recover a particular case of the
general solution given by (3).
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Fora; =landf= — 1,itis

90 = (1= 1) + ay(t — 1,)? [1+ 93 gy

a; 3

+—=—(t—1,)5 + Has (t—1)°
3.21 ! 39.21.21 !
4a4
_— (£ — 1) ], 25
+ 399191 ( 1) (25)

where a, is arbitrary.

VI. QUALITATIVE BEHAVIOR

Now we present qualitative behavior obtained through
numerical simulations of the system (5). The discussion is
made in the phase space (£,w) according to the values of
initial conditions &; and w; (&;: initial position; o,: initial
velocity), and according to the range in which the parameter
B lies.

A.The case 0<B<}

We first study the range bounded by the critical values
£ =0 and 8= }.In this interval, we have the two special
solutions w,, (§) =&(1 — £ /&y ) |Eq. (17a)] and w,, (&)

=£&(1—-£/€,) [Eq. (17b)], where & =
(1—V1—=88)/28 and &, = (1 +J1—8B)/2B.

As shown in Fig. 3, these solutions are two parabolic
trajectories in the phase space. These curves pass through
the point (0;0) where they have a common tangent line,
(dw/d€) = 1.

The “large” parabola corresponds to w = w,, (£) and
the intersection with the £ axis is at £ = £,,,. The small pa-
rabola represents @ = w,, (£) and & = £, is the intersection
with the £ axis.

In order to structure the discussion, we divide the phase
space into four strips defined by

Sl = {§/§>§m},
S, ={&/Eu<6<6),
Sy ={£/0<é<ént

={£/£<0}.
p=1 $=0  §,:=276 {n:724

47 NN

] 8 1
FIG. 3. Evolution in the phase space (,w) for 8=, (0<B<}). The

“large” and “small” parabola represent respectively, @ = w,, (£) and
© = wy (§). The curves@, ead to the attractor point

£=¢, and w=0. The curves&@,@@descnbe explosive solutions.
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We now describe the behavior for different initial conditions
(&:,0;). We denote the asymptotic solution for the time-
evolution of the particle by (£, .0, ).

1. §,€5;
We have the following results:
(i) @;>wy(£), then (£ ,0,.)=(£,,0), (26)

(ii) @; <0y (&), then o (£)~ — E%/Ey, for £ — .

(27
In case (i), the particle always asymptotically falls into the
bottom of the potential with a zero velocity. Two features
must be pointed out. First, if the particle moves initially
towards the positive £, it comes back after a finite time and
during the way back, the work done by the friction force
(3 — £)w exactly balances the potential energy in such a way
that the particle reaches £,, with a zero velocity (curve (D in
Fig. 3). As a matter of fact, also for negative initial velocity
[but greater than w,, (£;) ], the particle cannot pass over the
top (& = &,,) of the potential and it is finally trapped at
£ =¢,, (curve Q). For the second case [case (ii) }, the ini-
tial velocity is highly negative. The particle climbs up the top
of the potential and for £ <0, the w-dependent force exceeds
the potential force. As a consequence, an explosive solution
arises and the particle moves outwards (£~ — « ) with an
increasing negative velocity (curve @)). The behavior is giv-
en by Eq. (27) which is obtained by seeking a solution of the
form A£" in Eq. (7). We may now solve g as a function of 7.
Combining on one hand (4) and (26), we obtain the evolu-
tion corresponding to case (i),

{4+ (T8 1 _fm

28 t ot
This is an extension of solution (12) to 8 # }for large ¢ and
K > 0. On the other hand, combining (4) and (27) we obtain
[case (ii) ]

q(t)— (28)

, > om.

1 1
tolog(t/ty) t—t,
The particle moves to infinity in a finite time and we recover
the results of the Painlevé analysis as given in Sec. V. This
solution is again an extension of (12) to 8 #{, where the
constant X is negative.

q(t) ~ (29)

t—t,.

2.£,cS2

The behavior is similar to the one obtained for the case
£:€S5,. The curve = w,, (£) separates the initial conditions
in two classes. The first class [@ > @, (£) ] leads to evolution
(28) (curve @), corresponding to the attractor, while the
second class [@<wy, (£)] leads to solution (29) (curve Q)
corresponding to the explosive solution). A blowup of Fig. 3
in the region [0, £, ] is shown in Fig. 4.

3. £,65;

The asymptotic behavior is again the same as the case
£,€S5,. Nevertheless (see Fig. 4), the transient stage is quite
different. In fact, for w; > @, (£;), the particle climbs up the
top of the potential before falling to & = £,, with a zero ve-
locity (curves @and @). For @, <@, (&,), the particle can-
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{=0 §=m $=dm
LARGE
1} eanasoLa ATTRACTOR|
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™\ /

)
SMALL
PARABOLA
Al 1

0 3 6 $

FIG. 4. Blowup of the region [0,£,, ] shown in Fig. 3.

not jump over the top and, if w; is positive, the particle falls
back and for large negative £, w ., (§) is given by (27) (curve

®).
4. £,c5,
We have the following results:
() o;>0,(&;), then (§_,0,) = (£,,0); (30)

(i) @,<w, (&), then w_ (&)~ — £%/&,,, for E- — .
(31)

For high negative velocity {w; <w,, (£;)] the particle
climbs up the potential (the velocity dependent force ex-
ceeds the potential force) and experiences an explosive insta-
bility (curve@). By contrast for @; > w,, (£;) the particle is
always trapped at £ = £,, with a zero velocity (curve @).
Let us point out that this result is again a generalization
of the result obtained for 8 = §. In that case, the explosive
instability appears at time 7 for which 1 + 4,7 + 4,7 = 0.
Taking (3) into account we find that, for t— 7, we have
34, +4,7) 1
A,(r—7) t—7 '
In the above formula, 7' is the second root of 1+ A4,z

+ A,t*=0. Since £ = gt and w = gt + §t2, we have, for
t—>T,

q(1) =

(32)

31(4, +24,7) 1

§= A,(r—17) t—r 33
L3P 24 (1) 2)
T A(r—7) (-7

For the computation of @, we can neglect g¢ when ¢ —7. We
have consequently, for -7,

o _ ( _ L)M

&2 3/4,+24,7
But since 7 and 7’ are the two roots of 4,2 + A, + 1 =0,
the second member of (33b) is just equal to ( —}), i.e., to
- 1/&,, in agreement with (31).

As a conclusion of this section, we have two kinds of
asymptotic behavior. The particle falls to £, = £,, with
o, =0 for £,>0 and @, >w, (&) and for & <0 and
0),- > wm (g i )'

Ifw, <o, (&) for £, >0and if v, <w,, (£;) for £, <0, the
particle moves towards the region of negative £ with an in-
creasing negative velocity and w(&)~ — £%/&,, for

(33b)
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&~ — o (explosive solution). This behavior is described in
terms of ¢ and ¢ by Eqgs. (28), (29), and (31). Note that
(28), (29), and (31) also display the asymptotic behavior
for the case B = §. Consequently, asymptotic solutions ob-
tained analytically for the case =4 may be generalized to the
whole range 0 < <},

8. The case 3>}

For £> |, the situation is completely modified. The po-
tential has only a minimum at £ = 0. The two pivot points
E=¢,, and £=¢£,, and the corresponding “small” and
“large” parabolas do not exist any more. Since we have
shown that for 0 < 8 < },these elements give both bifurcation
boundaries and the attracting solutions, we can wonder if,
for B> |, there is any interest in working in the new space.
Consequently, the study in terms of ¢, ¢, and ¢ appears more
relevant. In the following, we consider therefore the basic
equation (2) and we will present simulations performed in
the phase space (g,4).

Equation (2) holds symmetry properties: it is invariant
under the transformation ¢t — t and g— — q. The trajec-
tories in the phase space are therefore expected to be sym-
metric with respect to the ¢ axis. Starting initially from

— go <0 with a zero velocity (g = 0), the particle moves
towards the region ¢> 0 and reaches the point g, with zero
velocity. For the same reason, the evolution from this point
qo with this initial zero velocity brings back the particle at

— go- In other words, the trajectory in the (g,9) space is a
closed curve. The particle oscillates in the range [ — g,

+ 4ol

Figure 5 exhibits the evolution for §=0.15, §=0.3,
and 8 = 0.6. The initial positionis — g, = — 1.

We note that the larger the value of 3, the larger is the
amplitude of ¢. This behavior comes out from the fact that
the potential Bg*/4 stiffens for increasing 8. Consequently,
the particle is more accelerated and the amplitude of the
velocity increases.

The lower part (¢ <0) of the trajectory presents a little
bump. This is a slowing down of the particle, when going
from ¢ > 0to g <0, due to the velocity-dependent drag force.

As one brings S nearer the critical value }, the particle
passes through ¢ = 0 at a slower pace and in the limit 8 = |,
the particle arrives at ¢ = 0 with no velocity while the time to
reach that point goes to infinity. It is this approach to the

q (@: 5= .6
(b): -.3
©): B=.15

S —

-6 0 6 a

FIG. 5. Solution in the phase space (¢,¢) for different values of 8 (8> {).
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point ¢ = ¢ = 0 that is subsequently described and solved in
the new space. For 8> } we, of course, do not need this new
space.

C.The case B <0

Since we now recover the self-similar solutions, we come
back to the (§,w) space. Figure 6 exhibits the two parabolic
trajectories in the phase space (£,). These trajectories cor-
respond to the special solutions (17a) and (17b) for 8 <0.
But in contradistinction to Sec. VI A, the curve w,, (£) is
now concave. Note that £, is always negative while £,, al-
ways lies in the range [0,2].

The new feature brought in this subsection is that no
attractor point can exist in the potential V(£).

This can be easily seen in terms of the variables ¢ and ¢.
Indeed, coming back to Eq. (2), the force — Bq° derives
from the potential ¥(q) = (8 /4)q*, which is always nega-
tive and monotonic decreasing for |g| - + «. Consequent-
ly, the point (g, ) = (0,0) is unstable and the particle al-
ways falls to the right or to the left.

The question is now the following: Starting from g <0
(resp. ¢>0) with a positive velocity ¢ (resp. §<0) can a
particle reach the top (g =0) of the potential and fall
towards the zone ¢ > 0 (resp. ¢ <0)?

The answer is yes. It is obtained from the study in the
(&§,0) phase space given in Fig. 6. Keeping in mind that the
curves w,, (§) and w,, (£) are trajectories of the particle and
noting that two distinct trajectories cannot cross, the phase
space {&,w) separates in two regions. The frontier between
these two regions is given by the curve w = w,, (£) for £ <0
and by o = w,, (&) for & > 0. We see, therefore, that this prop-
erty, already obtained in the range 0 < B <}, is preserved for
B<O.

The first region contains every initial point (£;,m,)
whose evolution brings asymptotically the particle towards
£— + oo with positive velocity. For any initial condition
(§:,w;) taken in the second region, the particle always
moves towards £~ — oo with negative velocity. The initial
points labeled (D to @ (respectively, ® to ®) give the evo-
lution towards §— + «w (resp. — o) with an increasing
positive (respectively, negative) velocity [w(£) ~&2].

$n=-3.8

25} Wk, ®/\/

§=0 §m-1.3
T

SMALL
-2.5 PARABOLA

i

-5 -2 1 ¢

FIG. 6. Evolution in the phase space (£,w) for B= — 0.4 (8<0). The
curves @m @ (resp. &to @) describe a particle moving towards £>0
(resp. £ <0).
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VII. CONCLUSION

The purpose of this paper was, first, to exhibit the im-
portance and role of the different symmetries obtained by the
usual Lie analysis, and, second, to show that rescaling and
casting the problem in a new phase space allows one to use
qualitative arguments about the sign of the drag force, the
form of the new potential, and the role of the self-similar
solutions.

The first intriguing result is the critical position from a
purely “mathematical” point of view of the case 8 = § where
everything can be analytically expressed while from a “phys-
ical” point of view it plays no role at all. This somewhat
arbitrary distinction between mathematical and physical
points of view just means that the bifurcation values (for the
parameter) or the bifurcation boundaries (for the initial
conditions) will be labeled physical results while the fact
that an analytical expression can be given is a mathematical
one.

The second result was the “pivot” role played by the
self-similar solutions ¢ = £,,/¢ and &,,/t. Moreover, since
the equation is also invariant under time translation, these
solutions can be extended (curves w =& — £%/£,, and
o = & — £%/€,,) providing all the interesting results about
the boundaries for the initial conditions leading to bifurca-
tions and the nature of the asymptotic solutions. When these
self-similar solutions disappear, the nature of the general so-
lution is totally modified.

The third result is the interesting concept of rescaling
where, introducing the new dynamical variables, we can find
easily the equilibrium points and their nature not only in
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their neighborhood but, sometimes, far away in a strongly
nonlinear region. Of course, in some situations (8> }), the
new phase space does not present any interest and the prob-
lem is simpler in the original (q,4,¢) space.

Now we point out that these methods and concepts can
be generalized to the case of the second-order differential

" equation with self-similar solutions [either time invariant as

(3) or not]. Of course, the results will depend on the struc-
ture of the different terms of the equation, but the method-
ology will essentially remain the same. We will present later
work on this generalization.
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A family of higher-order modified Korteweg—de Vries equations with variable coefficients
(+-ho-mKdV) is introduced. A one-to-one correspondence between a real solution of these
equations and a complex solution of the variable coefficient higher-order Korteweg—de Vries
(t-ho-KdV) equations is established through a complex Miura transformation. An auto-
Bicklund transformation for these t-ho-mKdV equations is derived from that of the #-ho-KdV
equations. The associated gauge transformations of the corresponding AKNS systems are
presented. They enable one to construct a hierarchy of solutions of the -ho-mKdV equations
from a known hierarchy without solving the differential equations for the wave functions
except the first one. A new family of higher-order evolution equations with an auto-Backlund
transformation is also derived in connection with the gauge transformation of the -ho-mKdV

equations.

1. INTRODUCTION
It is well known that the Miura transformation! (MT)
u=gq,+q (1.1)

connects the solution u of the Korteweg—de Vries (KdV)
equation

U, + Uy, + 6uu, =0, (1.2)
and the solution g of the modified KdV (mKdV) equation

g, = 64°q; + G =0. (1.3)
Chern and Peng® generalized these two equations to two
higher-order families of equations and also proved the exis-
tence of the same MT (1.1) connecting them. However,
(1.1) only furnishes a method for obtaining a solution u of
the KdV equation (1.2) from a known solution ¢ of the
mKdV equation (1.3) but not the other way round. Hence it
is of much interest to find an auto-Bécklund transformation
(BT) for (1.2) or (1.3) so that one can construct more new
solutions from a known one. Wadati and Sogo® pointed out
that there also exists a complex form of MT,

u=iq, +¢q (1.4)

between the solutions of Egs. (1.2) and (1.3). To check this
we need only to substitute (1.4) into (1.2). Thus

(g real),

U, + Uy, + 6uu, = (i bé; + Zq)(q, +64°q, + q,xx) =0.
(1.5)

Equations (1.4) and (1.5) indicate that if a complex solu-
tion u of the KdV equation (1.2) possesses the form of (1.4),
then the square root of the real part (or the integral of the
imaginary part) of u is a solution of the mKdV equation
(1.3) and vice versa. On the other hand, the authors of this
paper had derived an auto-BT for the ¢ variable coefficient
higher-order KdV (#-ho-KdV) family and a gauge transfor-
mation (GT) for the corresponding AKNS system.* In this
paper, we will generalize the results obtained there to the
case of the #-ho-KdV equation with complex solutions and
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derive a family of the ¢ variable coefficient higher-order
mKdV (#-ho-mKdV) equation from the #-ho-KdV equa-
tion. Then we show that the same MT (1.4) also provides a
connection between the families of the #-ho-KdV equation
and the +-ho-mKdV equation. Finally, we will use the MT
(1.4) and the auto-BT for the generalized -ho-KdV equa-
tion to derive an auto-BT for the +-ho-mKdV equation and
use the GT for the AKNS system corresponding to the z-ho-
KdV equation to derive a GT for the AKNS system corre-
sponding to the -ho-mKdV equation.

Il. THE -ho-mKdV EQUATION

The starting point of our problem is the following
AKNS system:

av = Qv, (2.1)
where V¥ is a column vector function of x and ¢,

%)

V= ( , (2.2)
¥,

and

Q=Pdx + Qd, (2.3)

P= ( KA ) : (2.4)
—q =7

7 areal parameter, independent of x and ¢, (2.5)

g afunction of x and ¢, (2.6)
A B

= 2.7
e=(2 %) @7
A a functional of ¢, 2.8)
A
B=__"_+L A _L(_L), 2.9)
Uj 47 \ g /x
A A
=_X__Lq,4~_1_( ) (2.10)
2q 7 m\g/s

Theorem 1: A necessary and sufficient condition for the
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integrability of the AKNS system (2.1) is that 4 and ¢ satis-
fy the following equation:

q. +

4
,_L( ") —0. (211
47 \ q /x

To prove this theorem it is sufficient to verify that the
exterior differential equality
dQ— QAL =0

holds under the condition (2.11).
Now, consider the following complex gauge transfor-
mation:

(2.12)

G: ¥V-9=GY, (2.13)
where
o_2 _
G,=("‘7 1 g l,q). (2.14)
We have
@1 —2n¢ —qir + iq%)
o (P)< (I
P2 U+ i,

Differentiating in (2.13) and using (2.1) and (2.11) we geta
complex AKNS system with ® as its wave function:

dd = O, (2.16)
where
® =Mdx + Ndt, (2.17)

. 2
M=(G,)xG“+G,PGl—'=( ’71 ’q:;’), (2.18)
N=(@).67+606 7 =% 7 ), @
29 \7  —
AX 1 AX .
a=179 +—|—) —i(2nd + A4,), (2.20)
9 2\gq/x
A, A,
a=qu—i(ii+2q)[qA+1,_+i( )],
ox q 2\ gq /s
(2.21)

if. d
7'=—(t—+2q)A. (2.22)

g\ Jx
Denote

R=iD+2g D=-9, (2.23)

29
C= — (1/299)RA. (2.24)

In view of (1.4), (2.23), (2.24), and (2.20)—(2.22), we get

a=27i(4C, + 70, (2.25)
o =29i(1Cex + nC, + u0), (2.26)
r= — 2iC. (2.27)
The AKNS system (2.16) now reads
do = ( nooo )cp dx
—1C, —7C  —3Cu — 7C, — uC
+ ( =TT 2Ces = )q> dt.
c 1C, +nC
(2.28)

For this AKNS system we have the following.
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Theorem 2: A necessary and sufficient condition for the
integrability of the AKNS system (2.28) is that C and u
satisfy the following equation:

#, +3Cree — 2072 — u)C, + u,C =0. (2.29)

To prove this theorem it is sufficient to verify that the
exterior differential equality

d® —0ONO=0

holds under the condition (2.29).
By substituting (1.4) and (2.24) into (2.29), we get the
following identity:

(2.30)

u, + 56,(“ —2(n* - u)@ + uxe

) I(A") (2.31)
B AY

This identity establishes a relation between the two equa-
tions (2.11) and (2.29). Since (2.31) is a complex identity
and the expression on the left-hand side of (2.11) is a multi-
ple of the real part of the right-hand side of (2.31). Hence we
arrive at the following.

Theorem 3: Under the condition that C and g are con-
nected by (2.24), a necessary and sufﬁment condition for ¢
and 4 tosatisfy Eq. (2.11) is that w and C satisfy Eq. (2.29).

Equation (2.29) contains a family of KdV-type equa-
tions. We have discussed it in some detail in our previous
paper.* We now use (2.29) to derive a family of mKdV equa-
tions.

4, 1
=Rq +1——— (g4
9 7

Choosing Cin (2.29) to be a polynomial of 5,
A n J
=4y > E "Ry (PP, (2.32)
j=0m=0
where
E=1D>4+u—\D"'u, (2.33)
D_——— D! de, (2.34)

and k; (¢) ( j=0,1,2,...,n) are some arbitrary real functions
of t. Denote

F=D*+u+u D™}, (2.35)
T=1D>+ uD+lu,. (2.36)

Using the commutative relation
TE = FT, (2.37)

after the substitution of (2.32) into (2.29), the 7 in (2.29)
will be eliminated and (2.29) leads to

u+4 Y k,_;()Fu, =0. (2.38)
Jj=0

For n=1, k, =2, and k, =0, (2.38) becomes the well-

known KdV equation (1.2). Therefore (2.38) is called the ¢

variable coefficient higher-order KdV (¢-ho-KdV) equa-

tion.

Denote
L=iD*+¢+q D 'q.
It is easy to verify that the commutative relation

(2.39)
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FR =RL (2.40)

holds. Substituting (1.4) into (2.38) and using (2.40), we
get the identity

u; +4 Z kn—j(t)Fjux =R qt +4 Z k"—j(t)qu"]'
j=0 j=0

(2.41)
Now consider the following equation:
g, +4 Y k,_;,(t)L%g, =0. (2.42)
j=o0

This is a family of evolution equations; forn = 1, k, = 1, and
k, =0, (2.42) gives the well-known mKdV equation (1.3).
Therefore we call (2.42) the ¢ variable coefficient higher-
order mKdV (#-ho-mKdV) equation. Thus, by (2.41), we
have the following.

Theorem 4: If a real function ¢ and a complex function u
with independent variables x and ¢ are connected by (1.4),
then a necessary and sufficient condition for the function ¢ to
be a solution of the -ho-mKdV equation (2.42) is that the
function u be a solution of the t-ho-KdV equation (2.38).

Furthermore, by Theorem 1, Theorem 3, (2.32), and
Theorem 4, we get the following.

Theorem 5: A necessary and sufficient condition for in-
tegrability of an AKNS system (2.1) is that the function ¢
satisfies the #-ho-mKdV equation (2.42).

lli. SOME RESULTS ABOUT THE #-ho-KdV EQUATION

In the last section, we revealed a relation between the z-
ho-KdV equation and the -ho-mKdV equation, that is, the

]

6= (0

FE - —(n+v)c+d

The notation in (3.5) has the following meanings in the pres-
ent case. Variables » and v have been defined in (2.5) and
(3.1). Denote

@3 = @2 (Xp1), (3.6)
B=¢3 eXP(fxvdx), (3.7)
Xo

B=| B%dx, (3.8)
Xo

B=| B %dx 3.9
X0

then

a=pB%a,—b,B’), (3.10)

b=b,82 (3.11)

c=PB%ayB — boBB' +c,—d,B’'), (3.12)

d = b,B + d,. (3.13)

Originally a, b, ¢, and d were expressed by some indefinite
integrals, but now, instead, we have expressed these quanti-
ties in (3.6)—(3.13) by some definite integrals for the con-

2572 J. Math. Phys., Vol. 29, No. 12, December 1988

(77+v)a——b+(7]2——vz)c—(ﬂ—v)d)

t-ho-mKdV equation can be derived from a complex solu-
tion #-ho-KdV equation. Our next step is to derive an auto-
BT for the t-ho-mKdV equation from the auto-BT of the ¢-
ho-KdV equation. Therefore we will first cite here the main
results about the -ho-KdV equation that we obtained pre-
viously.* Although these results originally were derived for
the case where the solution of the #-ho-KdV equation is a real
function, they are not subjected to this restriction in the deri-
vation.

Assume that # is a known solution of the z-ho-KdV
equation (2.38), and ® = (¢,,9,) " is a corresponding solu-
tion of the AKNS system (2.28). Let

V=@ /Pr= —@/Pr—N; 3.1)
then Eq. (2.38) has a new solution
v=u+2v,. (3.2)

Thisis an auto-BT for the #-ho-KdV equation (2.38). To this
new solution #’ of (2.38), by Theorem 2, there is a corre-
sponding new AKNS system

d<I>‘=( nooou )cb'dx

—1iC ol —-le;x— C: uC’
+ ( % , 77 2 A , 1’ ~, )q)l dt-
C 1CL+9C
3.3)
There also exists a gauge transformation
Gz: q>—’¢, = G2¢, (3.4)

which transforms (2.28) into (3.3), where G, is a 2 X2 ma-
trix as follows:

(3.5)

I

venience of determining the ay, by, ¢, and d,, in (3.10)-
(3.13). Consequently these quantities can now be deter-
mined as functions of ¢ as follows:

a0=al +b1A, (3.14)
bo= b, (3.15)
o= —aAd'—bAA' +c,+d A, (3.16)
d0= ‘_blA’+d1, (3.17)
where
t A
4 =f (@3)72C, [u(xp,2),t 1dt, (3.18)
A’=f (@9)2C, [ (xo1),t 1, (3.19)

and a,, b,, c,, and d, are some arbitrary constants satisfying
the following condition:

ad,— by, =1. (3.20)
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IV. A BACKLUND TRANSFORMATION FOR THE #-ho-
mKdV EQUATION

We now use the above results to derive a BT for the #-ho-
mKdV equation (2.42).

Suppose that ¢ is a known solution of the -ho-mKdV
equation (2.42); then, by Theorem 4, the function u, deter-
mined by (1.4), is a complex solution of the -ho-KdV equa-
tion (2.38), and, further, #’, defined by (3.2), is a new solu-
tion of (2.38). We want to show that the BT (3.2) for the
t-ho-KdV equation (2.38) is a complex function of the form
of a complex MT (1.4). Denote

gy +q*=u'=u+2v,, (4.1)

where ¢’ and g* are two real functions. It is necessary to show
that the following equality holds:

g* = (¢')> 4.2)

Substituting the complex function @, in (2.15) into (3.1)
and then (1.4) and (3.1) into (4.1), we have

iq, +q*=ig, + ¢ +2

X [In(¥F + ¢5)"? + itan™ " (¢,/9)) ] s
(4.3)

or, equating the imaginary part and the real part of the two
sides of equality (4.3), respectively,

+2 ¢1¢2x - ¢2¢1x

. Y AN
qg=q+ 2(tan ;/J—,)x =q TR (4.4)
¢*=¢ +2[In(hK + )]
Ui + Yobas
RAE G o)) “
By (2.1)-(2.7) we get
Y. =% + q¥o, (4.6)
Yor = —q¥hy — M, 4.7
Y, =AY, + By, (4.8)
¥y = C¢y — A¢,. (4.9)

Using (4.6) and (4.7), (4.4) and (4.5) can be simplified.
We have

i, A 4.10
q q g (4.10)
2 ¥ — %) i, \?
* = 2 = — 2Ly 4.11
7 7t 1](101 + ¥/, (q+¢'1 +¢2) ( )

Equations (4.10) and (4.11) indicate that equality (4.2)
holds. Therefore (3.2) can be rewritten in the form

u' =ig, +q°, (4.12)
where ¢’ is the function defined in (4.4). Thus, by the defini-
tion of #’ in (3.2), the equality (4.12), and Theorem 4, we
arrive at the following.

Theorem 6: Assume that ¢ is a solution of the #-ho-
mKdV equation (2.42) and that ¢, and ¢, are the corre-
sponding solutions of the AKNS system (2.1); then the
function ¢', defined in (4.4), is a new solution of the #-ho-
mKdV equation (2.42), that is, (4.4) is a BT for the t-ho-
mKdV equation (2.42).
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Forn=1, ky=1, and k, = 0in (2.42), or the mKdV
equation (1.3), this result was obtained by Wadati er al.¢
(see, also, Rogers and Shadwick’).

V. GAUGE TRANSFORMATION AND THE BACKLUND
TRANSFORMATION

It is obvious that the application of the BT (4.4) for
finding a new solution of the -ho-mKdV equation requires
the solutions ¢, and ¥, of the AKNS system (2.1). In this
section, we will introduce an easy method to obtain a new
solution of (2.1) from a known solution, that is, the gauge
transformation method for the AKNS system (2.1).

To the solution ¢’ in (4.4) of the 7-ho-mKdV equation
(2.42), by Theorem 5, there is a corresponding integrable
AKNS system

dv' = Q'V, (5.1)
where W' is a column vector function of x and ¢,

\V:('/’f), (5.2)

¥
and

Q' =P'dx+ Q'dt, (5.3)

P’=( o1 ) (5.4)
—9q -7

77 kept the same as (2.5), (5.5)

¢’ afunction defined in (4.4), (5.6)
4’ B’ )

f= , 5.
Q (C’ Y (5.7)
A" a functional of ¢, (5.8)
, AL 1, 1 (4;

B'=—24—gd4+—\-Z%), (5.9)
29 7 dn\q /x
A’ A

C'=—’j—-1-q'A—L( j‘). (5.10)
2¢ 7 49 \ ¢ /x

Referring to (2.13)-(2.28), there exists a complex gauge
transformation

G;: V-9 =06V, (5.11)
with
> I—2 . ’
G, = ('q 7 .q) (5.12)
1 i
and
’ _2 ’ —_ 7 +l' ’
(I)'=(¢:)=( 77¢1’ q'.ﬁzl Q'pl), (5.13)
P2 U + i

such that @’ satisfies the complex AKNS system

d<I>'=( 7 u

)<I>'dx
—CL—nC’ —3CL, —7CL —uC"
+( % :\ K i A K ~, )Q’dt,
(ol IC; +7C
(5.14)

where «' is a solution of the -ho-KdV equation (2.38) de-
fined in (3.2) and C' is connected to ¢’ and 4’ as follows:
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¢ =—L Rru (R':i—a—+2q’).
2nq ax
Thus (5.14) is just the AKNS system (3.3), and we know
from Sec. III that there exists a gauge transformation (3.4)
that transforms (2.28) into (3.3) [namely (5.14)]. Let
G=G;'G,G, (5.16)

where G,, G,, and G, are defined in (2.14), (3.5), and
(5.12), respectively. Thus, by (2.13), (3.4), and (5.11),
(5.16) is a gauge transformation

(5.15)

G: V¥ =GV (5.17)
that transforms the AKNS systems (2.1) into (5.14).

Denote

w=tan""(/¢,), w =tan"'(¥;/¢]); (5.18)
then the BT (4.4) can be expressed in terms of w:

g=q+2w,. (5.19)

Now we can use the gauge transformation (5.17) or, equiv-
alently, (3.4) to derive a relationship between w and w’. Us-
ing (5.13), (3.4), (3.5), (2.15), and (3.1), we have

i+ =g
= (/B —cpy — [(n+v)c—d 1}
= (@o/B* W — c(@/@2) — (7 +v)c + d}
=@; He(g +v) — (9 +v)c+d}

= |y (%, — ihy)d. (5.20)

Let u and v be the real and imaginary part of the complex
function d defined in (3.13), respectively:

d=u+iv.
Substituting (5.21) into (5.20) we get
Y+ = I‘Pz‘ﬁz[('ﬁlﬂ +¢v) +ilhv - ) |

(5.21)

(5.22)
Denote
w, = tan~ ' (v/u); (5.23)
then by (5.18), (5.22), and (5.23), we obtain
tanw' = (Yv — ¥, 1)/ (Y + ¢v)
= (tan wy — tan w)/ (1 4 tan w, tan w)
= tan(wy, — w). (5.24)
So w possesses the transformation formula
W = w, — w. (5.25)

To find w,, defined in (5.23), we must know how to
obtain the real functions 1 and v in (5.21). From (3.13),
(3.8), (3.17), and (3.19), we see that it is enough to clarjfy
what the real part and imaginary part of the functional C,
are in (3.19). This can be done by the following procedure.
Let S be an operator defined by

S=D"'qD[iDg~'D + 4], (5.26)
it is easy to verify that the commutative relation
gEq 'R =RS (5.27)

holds, where R and E are defined in (2.23) and (2.33), re-
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spectively. Then we consider the operator E ™ acting on the
constant 1; repeatedly using (5.27), we have

E"=E™1
=E" 'E-1=1E™" 'q7'(gEq”'R)"1
=1E""'q"'RS=1E™"?q" '(¢Eq~'R)S
=12_Em—2q-le2 J %qwlem
=S"+ilqg”'DS™ (5.28)
Substituting (5.28) into (2.32), we get the expression of 6‘,,

separated into real and imaginary parts as follows:

A n J .
&, =43 3 57k,

ji=0m=0

n j

+i2¢~'D Z S S"'kjﬂ,,,(t)'r]z‘"‘“f’]. (5.29)
j=0m=0

Comparing (5.29) with (2.24), we get the explicit expres-

sion of the functional 4 in (2.7)-(2.10) in terms of a polyno-

mial in 7:

a
A=A4,=-4Y ¥ S"k_, (Op?" =P+ (530)
j=0m=0
Now we can express C, in a simpler form:
C,= — (1/9)4, — i(1/29q)DA,. (5.31)

By the BT, (5.19), (5.25), and the gauge transforma-
tion (3.4) we can now obtain a hierarchy of solutions of the
t-ho-mKdV equation (2.42),

quqzyqy---,qk 3ecey (532)

from a known solution g, of that equation and a hierarchy of
solutions of the corresponding AKNS system (2.1)-(2.10),

L% 200 0K R (5.33)

without solving any differential equation except for ¥, in the
following manner:

R 7‘12 /43 /qf —

D

1

(5.34)

The equality (5.25) is, in the fact, a BT of another evolu-
tion equation. We now derive this equation. Taking the de-
rivative with respect to x in the first equality of (5.18) and
using (4.6) and (4.7), we get

w, = —2qw—q(1 + w?). (5.35)
Solving for g from (5.35) gives
g= — (w, +2qw)/(1 + w?). (5.36)

Again taking the derivative with respect to ¢ in the first equa-
lity of (5.18) and using (4.8) and (4.9), we get

w, = — 24w — Buw* + C. (5.37)
Substitute (2.9) and (2.10) into (5.37),
w, = — 24w + (4,/29) (1 — w?)
A
| _[Lq“_l_( ) ](sz); (5.38)
] 4 \ g /x

further, substitute (5.30) into (5.38),
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w=43 3 HS™k_, (-0,

j=0m=0
where H is an operator defined as

(5.39)

H=[2w— (1/2¢)(1 —w*)D
+ (1 +w?)((1/7)q + (1/47)Dg'D)]. (5.40)

The function g contained in H and S can be expressed in
terms of wby (5.36). Therefore (5.39) is a class of ¢ variable
higher-order nonlinear evolution equations. This is just the
equation that we want to find, and possesses the BT (5.25).
For n =1, Eq. (5.39) reads
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w, + koW, + [20Pw, /(1 +w*)?] (1297 — oo,

+w?) — 6ww,w, /(1 +uw?)]+ 4kw, =0. (5.41)
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A smooth manifold can be defined as the pair (M, C), where C is a family of functions on a set
M, satisfying suitable axioms. The manifold concept can be easily generalized by dropping the
axiom ensuring the manifold to be locally diffeomorphic to R". The resulting concept, the so-
called d-space, turns out to be a geometrically workable structure. The existence of the pseudo-
Riemannian structure (both Riemannian and Lorentz) on d-spaces is discussed. It is proposed

to model the physical space-time by a d-space rather than by a manifold. In some quantum
gravity situations space-time may still be a d-space but already not a manifold.

1. INTRODUCTION

The set C(X) of continuous functions on a “‘reasonable”
topological space X forms a ring, and the set C, of functions
that vanish at a point xeX forms a maximal ideal. Moreover,
each maximal ideal in C(X) is of the form C, for some xeX.
Since the space of maximal ideals in C(X) is isomorphic to
X, one can reconstruct the geometric and topological struc-
tureof X from the knowledge of the algebraic structure of the
ring C(X). In the spirit of this program, Penrose and
Rindler,' following Chevalley? and Nomizu,® have devel-
oped the theory of differential manifolds* (d-manifolds, for
the sake of brevity) by defining a manifold to be an abstract
set of points, the structure of which is determined by a non-
empty set .7 of scalar fields on M satisfying suitable axioms.
However, it turns out that if one drops the axiom enforcing
the manifold to be locally diffeomorphic to the Euclidean
space of some dimension, one obtains the more general (but
still geometrically manageable) concept of the so-called dif
Jerential space or d-space, for short.

Quite a number of different generalizations of the mani-
fold concept were proposed by mathematicians. For in-
stance, Aronszajn® and Marshall® developed the theory of
the so-called sub-Cartesian spaces that essentially are mani-
folds with “‘singularities” such as piecewise manifolds and
quasianalytic sets of R". A certain modification of this ap-
proach was suggested by Spallek’ (see also Ref. 8). Mostow”
introduced his concept of the differential space within the
context of Milnor’s classifying spaces. Chen'® considered a
differential space structure in the loop space which led him
to a version of the de Rham theorem in this space. A theory
of differential spaces, together with the de Rham theorem,
was also elaborated by Smith."' In Ref. 12 we compare these
generalizations of the smooth manifold concept and estab-
lish some dependences between them.

* On leave of absence from the Institute of Nuclear Physics, ul. Radzikows-
kiego 152, 31-342 Cracow, Poland.
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As far as we know, no attempt has ever been made to
employ such generalizations to model the physical space-
time, and this is precisely the goal of the present paper. For
reasons established in Ref. 12, we shall do this with the help
of Sikorski’s approach (in this approach generality seems to
be best balanced with workability). In order to be able to
fulfill our goal, we must develop and adapt mathematical
formalism to physical purposes (especially, the existence of
the Lorentz structure should be fully discussed ). The beauti-
ful monograph by Sikorski’? (which, unfortunately, exists
only in the Polish version) presents differential geometry in
terms of d-spaces. Here we shall give only necessary defini-
tions and theorems, providing the English reader with a
more comprehensive review in Ref. 14.

Of course, every d-manifold is a d-space, but not vice
versa. Those d-spaces that are not d-manifolds will be called
d-spaces proper. The macroscopic space-time of contempo-
rary relativistic physics doubtlessly should be modeled by a
four-dimensional d-manifold, but it should be expected that
when going deeper and deeper to smaller and smaller scales
or closer and closer to the cosmological singularity, one
reaches the level at which the space-time is already not a d-
manifold but it still continues to be a d-space.

In other words, sufficiently near to the cosmological sin-
gularity or at sufficiently small scales general relativity is
commonly believed to break down. We might speculate that
it is the principle of equivalence that, in such circumstances,
ceases to be valid. This principle, in turn, is coded into the
geometric structure that postulates that locally every space-
time should be diffeomorphic to that of special relativity
(i.e., that the gravitational field locally can be transformed
away). A space-time manifold without this structure is ex-
actly a d-space proper.

The differential space method turns out to be a very
efficient tool in dealing with the classical singularity prob-
lem. Singularities (at least some kinds of them) need not be
considered as belonging to “singular boundaries” of space-
time, but can be regarded as “internal domains” of a corre-
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sponding d-space. Moreover, a d-manifold with boundary
turns out to be a d-space, and one may find it useful to study
space-time boundaries (such as the causal boundary or
Schmidt’s b-boundary) in terms of the d-space theory. We
shall present some striking results concerning these fields of
research in a forthcoming paper.

We begin our study with a short description of how the
topology of a set is determined by a family of functions de-
fined on it (Sec. II). Then the definition of d-space (Sec. IIT)
is followed by a comparison of the d-space concept with that
of a d-manifold (Sec. IV). The tangent space of a d-space is
defined, and the dimensionality problem of d-spaces is dis-
cussed in Sec. V (dimension is not a part of the d-space defi-
nition). Qur aim is to introduce pseudo-Riemannian struc-
tures (both Riemannian and Lorentz) on d-spaces (Sec.
V1), and to prove theorems on their existence (Sec. VII). In
Sec. VIII, we reflect briefly upon the physical significance of
our proposal to model the physical space-time by a d-space
rather than by a d-manifold.

Il. TOPOLOGIES IN TERMS OF A FAMILY OF
FUNCTIONS

Let M be any set, 7 a family of topological spaces, and
C a nonempty family of functions defined on M with values
in a topological space of the family .%, i.e., C={ f M-S,
€.%}. The weakest topology in which all functions feC are
continuous will be called the topology induced by C, and
denoted by 7.

Let & be a family of partially ordered sets. The partial
order relation in a set Qe 7 will be denoted by <. We define
the relation <, in the following way: if x,0eQ, x <,y
iff x<,p and x#y. The topology, with the subbase consist-
ing of all sets of the form {peM: f(p)<x} and
{peM: fip)>x}, feC C{f M~ P, €P}, xe 2, is said to
be the topology T induced in M by a nonempty family C.

The set R of reals is both a topological space (with the
natural topology) and an ordered set (with the natural order
relation). Let CC{ £ M—R}. The topology in M can be
introduced according to the above-mentioned methods, pro-
vided we treat R as a topological space or an ordered set,
respectively. It is evident that in this case both topologies
coincide, and we have the topology T uniquely defined in
M.

i d-SPACES

Let (M, T) be any topological space, and C any non-
empty family of functions on M with values in any set.

Definition 3.1: A function f, defined on 4 C M, is said to
be a local C-function, if for every ped thereis a neighborhood
Binthe topological subspace (4, T, ), where T, is the topol-
ogy induced in 4 by 7, and a function geC such that
f1s =gls. The set of local C-functions on 4 C M will be de-
noted by C,. We obviously have CCC,,.

Definition 3.2: The set Cis said to be closed with respect
to localization if C = C,,.

Definition 3.3: Let Cbe a family of real functions on M,
and & the set of all C *-functions {(smooth functions) on R".
Then Cis said to be closed with respect to superposition with
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smooth functions on the Euclidean space R" if for any natural
number n and any function we& one has f,..., f,eC
= w°( fiye.rs S, JEC.

Definition 3.4: A family C of real functions on M is said
to be a differential structure (d-structure) on M if it is closed
with respect to localization and closed with respect to super-
position with smooth functions on the Euclidean space R”,
for any neN. The pair (M, C) is called the differential space
(d-space); the set M being the support of the d-structure C.
We shall always assume that M is a topological space with
the topology T induced by C.

Let us notice that the dimensionality of (M, C) isnota
part of the above definition.

It can be easily shown that if C is a d-structure, C'is an
algebra (in the foreign literature called also a linear ring)
over R containing all constant functions (see Ref. 13, p. 77).
A d-space (M, C) is a Hausdorff topological space iff for any
P, geM, there is a function f&C such that f(p) #£f(q). Any d-
space (M, C) can always be made Hausdorff. Indeed, define
the equivalence relation pq iff f(p) = f(q), for all feC, and
consider the set M /#. In the following, we shall always as-
sume that all d-spaces considered are Hausdorff.

Proposition 3.5: Let M be any set. For any set C, of real
functions on M, there is the smallest d-structure Csuch that
C,CC, and the topology T coincides with the topology
T, . Then C, is said to generate the d-structure C. u

Proof: Let C be the family of all functions f; M — R such
that feC iff, for every peM, there is a neighborhood Uof p, in
the topology T, such that f|, = @°(f},..., f, )y, where

Jiseer [,€C, and we® . The family C'is closed with respect to
localization and closed with respect to superposition with
smooth functions on R". One can easily check that if C, is a
d-structure and C,C C, CC, then C, = C. Any function feC
is continuous in the topology T, and C,CC implies
Te=Tg,. O

Instead of quoting examples of d-spaces let us prove the
following.

Proposition 3.6: Every subset 4 of R” can be made into a
d-space. n

Proof Let 7r;: R” 3 (x,...,x,) »x;€ R, and p;, =7,| 4,
i =1,..., n. The topology T, coincides with the topology on
A induced from R”. The family {p,} generates the d-struc-
ture & , on 4. o

Let (M, C) be a d-space, and NC M. One can easily see
that (&, Cy), where Cy, is the set of C-functions on N, is also
a d-space. It will be called the d-subspace of the d-space
M, C).

IV. d-SPACES AND d-MANIFOLDS

Definition 4.1: Let (M, C) and (N, D) be d-spaces. A
one-to-one mapping f M- N is said to be the diffeornor-
phism of (M, C) onto (N, D), iff hofeC and gof ~' eD, for
each AeD, geC.

Definition 4.2: A d-space (M, C) is said to be an n-di-
mensional differential manifold (d-manifold, for short) if,
for every peM, there is a neighborhood VeT of p and a
neighborhood UeT ., U being a subset of R”, and a diffeo-
morphism of (U,% ;) onto (V,C, ); the pairs (U,€ ;) and
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(V,C,) are d-subspaces of (R",# ) and (M, C), respective-
1y.

It can be shown that Definition 4.2 is equivalent to the
time honored definition of C ©-manifolds in terms of atlases
on M. Indeed, if (M, 27) is a d-manifold, where M is an n-
dimensional topological (Hausdorff) space, and .« an atlas
on M, i.e., the set of all maps g: U—M, U being an open
subset of R”, satisfying the well-known conditions, then a
function f: M — R is said to be a smooth _function on M if, for
every function ge.Z, the function fog is C ©. If C denotes all
smooth functions on M, (M, C) is an n-dimensional d-mani-
fold in the sense of Definition 4.2. And vice versa, if (M, C)
is a d-manifold in the sense of Definition 4.2, one can easily
see that functions of the form hog €% ,where g: U-M, U
CR", and heC, form maps belonging to the atlas /. (For
details see Ref. 13, pp. 100-104.)

Moreover, the definition of d-manifolds in terms of the
family C turns out to be more natural than the traditional
one. Let &/, and &7, be two atlases on M and C, and C, two
families of all-smooth functions determined by the atlases
&, and .« ,, respectively. We have the following proposi-
tion,

Proposition 4.3: C, = C, iff, for any fe o/, and ge &/,
£~ 'ofis a diffeomorphism. O

This proposition establishes an equivalence relation
between d-manifolds: (M, ;) ~(M,o/,) if fe &/, and g
€ « , implies that g~ 'of'is a diffeomorphism. Two d-mani-
folds belonging to the same equivalence class are indistin-
guishable from the point of view of differential geometry,
and, strictly speaking, one should work not with individual
d-manifolds but with their equivalence classes. From this
point of view, atlases turn out to be contingent and nonessen-
tial entities. On the other hand, families C of functions on M
identify a given equivalence class uniquely. Moreover, by
defining d-space as a pair (M, C), M can be assumed to be
any set and there is no need to ascribe to it, from the begin-
ning, the structure of a topological space.

It should be noticed that one can define a C -manifold
by assuming that a d-space (M, C) is locally diffeomorphic
(in the sense of Definition 4.1) to (R", € "), where €V isa
d-structure on R”" containing C "-functions.

V. TANGENT SPACE OF A d-SPACE. DIFFERENTIAL
AND TOPOLOGICAL DIMENSIONS

In the following we shall assume that (M, C) is a d-
space (not necessarily a d-manifold), and the functions be-
longing to C will be called smooth functions on M.

Definition 5.1: Any linear mapping v: C— R, satisfying
the Leibniz condition

v(f8) =v(Ng(p) + flp)v(g),
for £, geC, is said to be a tangent vector to a d-space (M, C) at
PEM, and the set of all tangent vectors to (M, C) at p is called
the tangent space to (M, C) at p, and will be denoted by M,,..

One should notice that A, is a nonempty set since the
zero mapping 0: C— R defined by f—0, f&C, belongs to M,
(for every peM). It is also easily seen that M, is a vector
space.

Definition 5.2: A cross section of the tangent bundle
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UpemM,, ie, a mapping V: M—U,,M, such that
moV =id,,, where 7 is the bundle projection, is said to be a
tangent vector field on the d-space (M, C). The tangent vec-
tor field on (M, C) is said to be smooth if, for every feC, the
mapping V() (f): M-R, defined by M3p—F(p) (f), be-
longs to C. For definitions of tensors and smooth tensor
fields on d-spaces the reader should refer to the litera-
ture.'>" It is worthwhile to notice that any vector bundle
can be defined in terms of the theory of d-spaces (see Ref.
14).

The theory of tangent spaces of d-spaces can be devel-
oped analogously to that of d-manifolds. However, one
should pay attention to some important peculiarities of the
d-space concept, one of the most striking being the notion of
dimension.

Definition 5.3: (1) A number neN is called the (global)
differential dimension (d-dimension) of (M, C) if (i)
dim(M,) = n, for every peM; (ii) for every peM and every
vector €M, there is a smooth tangent vector field ¥ on
(M, C) such that V(p) =v. (2) The dimension of M,
dim(M,,), is called the local dimension (I-dimension) of the
d-space (M, C) at the point p.

Example 5.4: Let (R?, &) be a d-space, the so-called
Euclidean d-space, and let us consider the subset of R%:
A ={(x,y)e R% xy = 0}. The pair (4, ¥ ,) is a d-space. It
is evident that dim (4,) = 1, for all p# (0, 0). Let fe & ,;
2= (x, p)ed implies f(x, y)eR, and there are two linear
mappings V,, V,: & , - R defined by f~(df/dx) (0, 0) and
S~ (9f /9y) (0, 0), correspondingly. The mappings satisfy
the Leibniz condition and are linearly independent. There-
fore, they span the two-dimensional tangent space of the d-
manifold (4, & ,) at the point p = (0, 0). This d-space,
owing to the existence of the point p = (0, 0), fails to be a d-
manifold. Clearly, the d-space (4, & ,) has no (global) d-
dimension.

For d-manifolds, 1-dimension is the same everywhere
and is equal to its topological dimension (e.g., in the sense of
Menger or Urysohn). Both these statements are not true
with respect to d-spaces proper. The following example illus-
trates that d-dimension is a property of d-structure C rather
than of its support M.

Example 5.5: Let (R, C,) and (R, C,) be two d-spaces
with different d-structures defined in the following way:
C, = {f R-R, f&C°and has one-sided derivatives}, C, = &
= C>=(R). Both d-spaces have the same topology and
therefore the same topological dimension, whereas the d-
dimension of (R, C,) is equal to 2, and that of (R, C,) is
equal to 1.

Allthese peculiarities follow from the fact that d-dimen-
sion is invariant with respect to diffeomorphisms but not
with respect to homeomorphisms.

VI. PSEUDO-RIEMANNIAN d-SPACES

The set M (M) of all smooth tangent vector fields on
(M, C), from the algebraic point of view, is a module over
the algebra C of all smooth real functions on M. The set
Vises Vo CIR(M) is said to be the vector basis of the module
M (M) if (i) for every peM, V,(p),..., ¥, (p) isabasisin M,
and (ii) Vy,..., ¥, is a C-basis of the module I (M), i.e., if,
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for every Vet (M), there is exactly one finite sequence f‘eC,
i=1,..., n, such that

V=317,

Definition 6.1: Let G(p) denote a scalar product in the
tangent space M,. From now on, we additionally assume
that the module M (M) has a finite vector basis (and conse-
quently M has a d-dimension); such modules will be called
differential modules. We define the scalar product in T (M)
by G(¥, W) (p) = G(p)(V(p), W(p)), V, WER(M), peM.
The scalar product G is said to be smooth if, for any
V, WelR(M), GV, W)eC, ie., if GeZL(MM),
M(M); C), where the last symbol denotes the set of all bilin-
ear module mappings with values in C.

In other words, G is a two-covariant C-tensor, symmet-
ric and nondegenerate.

Theorem 6.2: If G is a smooth scalar product in the dif-
ferential module I (M), every point pecM has a neighbor-
hood U on which there is a G-orthonormal vector basis
Vis..s V, of themodule M(M), i.e., G(V,,V;) = &€, where
€=G(V,V,)=+1,ij=1,.,n=dim (R(M)). |

Proof: By construction through the standard Gramm-
Schmidt G-orthogonalization (see, Ref. 13, p. 311). O

‘Whenever convenient, the G-orthogonalization may be
ordered so that negative signs (if any) come first. The num-
ber I of minus signs is basis independent and the same every-
where in I (M); it is called the index of the module M (M).

Definition 6.3: The pair (2 (M), G), where TR(M) is a
differential module and G a smooth scalar product on it, is
called a pseudo-Riemannian module on the d-space (M, C).
Also, Gis referred to as the metric on (M, C). If additionally
I = 0or! = dim(IM (M)), (M(M), G)iscalleda Riemannian
moduleon (M, C);if I=1or I=n— 1, it is called a Lor-
entz module on (M, C).

Theorem 6.4: Let (M (M), G) be a pseudo-Riemannian
module. There is one and only one covariant derivative D in
IM(M) such that DG = 0. (For the elementary proof, see
Ref. 13, pp. 224-227.) ]

The covariant derivative of the above theorem is called
the natural derivative in M(M).

Definition 6.5: The triple (M, C, G) is said to be a pseu-
do-Riemannian d-space if (M, C) is a d-space, and TR(M) a
pseudo-Riemannian differential module on (M, C). If
(<M(M), G)is a Riemann or Lorentz differential module on
(M, C), (M, C, G) is said to be Riemannian or Lorentz d-
space, respectively.

If in Definition 6.5 “d-space” is replaced by *“d-mani-
fold” one obtains the usuval pseudo-Riemannian, Rieman-
nian or Lorentz d-manifold, respectively.

Two pseudo-Riemannian d-spaces (M, C,, G,) and
(M,, C,, G,) are said to be isometric if there is a diffeomor-
phism £ (M,, C,) - (M,, C,), which preserves the scalar
product. It can be shown that any isometry transforms the
natural covariant derivative into the natural covariant deriv-
ative. One can also define curvature tensors on pseudo-Rie-
mannian d-spaces,'® and write down on them Einstein’s
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equations. However, for the time being we postpone these
interesting topics to focus on the existence of the Lorentz
structure on d-spaces.

VIi. THE EXISTENCE OF THE RIEMANN AND LORENTZ
STRUCTURES ON d-SPACES

Let (M, C) be a d-space, and Tand W two tensor fields
on M having the same number of upper and lower indices.
For any feC, we define the fequivalence relation,
T~W,iffT |5 = W|5-, where F = {peM: f(p)#0}.
For a given feC, let M}’ ( /) denote the set of all f-equiv-
alence classes, where (k) and (/) signify the number of up-
per and lower indices of a given tensor field, corresponding-
ly.

Lemma 7.1: C( f): = M) ( f) with the natural defini-
tions of sums and products is a commutative ring with iden-
tity. Here M( f): = M3 ( f) is a module over C( f) (see
Ref. 1, p. 99). O

Theorem 7.2: In a differential d-module (M) of all
smooth vector fields on (M, C), there exists a Riemann met-
ric G [so that (M(M), G) is a Riemann module on the d-
space (M, C)] if the following conditions are satisfied: (i)
there exists a finite set of non-negative functions f,,..., f,€C
such that

d

Sfi=4

i=1

(ii) each module M{y) ( £;) has a finite vector basis. M

Proof: Essentially, conditions (i) and (ii) define a parti-
tion of unity on M (see Ref. 1, p. 99). With the help of the
partition, one assembles together, in a standard way,® all
Riemann metrics defined locally. a

From condition (ii) of the above theorem, it follows
that a d-space (M, C) carrying a Riemann structure must
have a d-dimension. However, one should notice that in or-
der to carry a Riemann structure a d-space need not be a d-
manifold.

Definition 7.3: Let M, be a tangent space of a d-space
(M, C) at a point pecM. A one-dimensional vector subspace
Q, of M, is called a direction (or a line element) in M,,. The
function Q: p—@, is called a direction field on (M, C).

It is worth noticing that, in view of Definition 5.1, a
direction field is, in fact, defined above in terms of a mapping
from C to R.

Theorem 7.4: In a differential d-module (M), there
exists a Lorentz metric G [so that (IR (M), G) is a Lorentz
module on the d-space (M, C)1] if, in addition to conditions
(i) and (ii) of Theorem 7.2, a continuous direction field Q:
p—Q,, peM, exists on (M, C). ]

Proof: The proof is a repetition of the standard demon-
stration of the existence of a Lorentz structure on a d-mani-
fold (e.g., Ref. 16, p. 293). 0

Vill. COMMENTS

As we have seen, the definition of a d-manifold in terms
of the algebra of functions is at least as workable as the tradi-
tional one in terms of atlases, and the former could equally
well be employed to model the physical space-time as the
latter has done it for a long time with great success. In fact,
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the former approach has been chosen by Penrose and
Rindler.! The algebra of functions, defining the manifold
structure, is interpreted by them as a “‘system of scalar
fields.” A justification for such an option could be that the
measurement results are always scalars [although what is
called by physicists “observable” is a function on the phase
space (cotangent bundle) rather than on space-time itself].
In the new approach “even coordinate systems may be
thought of simply as sets of scalar fields” (Ref. 1, p. 180).
One should notice that, in view of Proposition 3.5 above, if
C, is any set of scalar fields, there is a d-structure C genera-
ted by C, (i.e., the smallest C such that C,CC). Corre-
spondingly, one could truly speak of a d-space determined by
measurement results (by ).

Changing from the manifold definition in terms of at-
lases to that in terms of the algebra of functions might be a
question of elegance or of better or worse operational intu-
ition, but one can hardly expect new physical insights. An
interesting advantage of such a change is the possibility of
generalizing the space-time model and to consider it to be a
d-space rather than a d-manifold. It is true that in ordinary
macroscopic situations local resemblance of space-time to a
patch of a smooth Euclidean space is a natural feature. How-
ever, it is also highly restrictive. As we have seen a relaxation
of these restrictions still leaves quite a lot of an effectively
workable structure. This may turn out to be desirable when
one penetrates more exotic situations (quantum gravity lev-
el, space-time with boundary-—as was discussed in the Intro-
duction).

Therefore, we propose to consider the triple
(M, C, (M(M), G)), where (M,C) is a d-space and
(M(M), G)is a Lorentz differential module on (M, C),as a
model for physical space-time. If the d-space in questionisa
d-manifold, the traditional model of space-time is automati-
cally obtained.

One could feel a little disappointed that the metric G in
(M) presupposes a d-dimension of (M, C). Some suc-
cesses of multidimensional cosmologies (of Kaluza-Klein,
supergravity, superstring, or combined types) in the last
years, have evoked a hope that the dimension of space-time
could possibly be treated as a dynamical variable, the num-
ber of dimensions being undetermined in the beginning, and
then gradually emerging as enforced by the dynamics of the
universe. The present work shows that it is the Lorentz met-
ric that requires a fixed number of space-time dimensions. In
spite of the above-mentioned disappointment, this is a valu-
able result: in order to manipulate dimension, one must go
beneath the metric level. If it is the quantization of gravity
that is expected to determine the dimensionality of space-
time, it cannot be a quantization of space-time metric; it has
to be a quantization of at least the space-time d-structure.
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The orthodox theory of general relativity seems to be too
restrictive to face such exotic expectations.

The postulate that a d-space modeling space-time
should be a d-manifold is, in fact, the implementation of
Einstein’s idea that locally space-time is indistinguishable
from a small region of the Euclidean space. If one models
space-time by a d-space proper, this version of the equiv-
alence principle is automatically discarded. How does phys-
ics look without the principle of equivalence? Most prob-
ably, this question will be answered when the correct form of
a quantum cosmology is elaborated for the very early uni-
verse.

We are far from thinking that the d-space model of
space-time, argued for in the present work, will solve all
problems of contemporary physics and cosmology. We ar-
gue that it is worth being explored as a step towards this
ambitious goal. But even this provisional model is not yet
complete. Parallel propagation structure, curvature struc-
ture, and perhaps Einstein’s equations on d-spaces await
their elaboration. We hope to deal with these problems in
our subsequent works.
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Theory of fluctuations and small oscillations for quantum lattice systems
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The theory of fluctuations for a quantum lattice system is rigorously defined. The property of
stability of equilibrium states against macroscopic fluctuations is formulated and small

oscillations around equilibrium are studied.

I. INTRODUCTION

It is well known that for macroscopic systems there are
essentially two types of observables that are primordially
relevant in physics. The first type being the so-called exten-
sive observables, which are described for infinite systems by
their space means, e.g., energy densities, entropy densities,
mean magnetization, etc. In general, take any local observ-
able A(x) localized around the space point xeR”
(v = 1,2,...); then the mathematical problem is to prove the
existence of the limit

lim —

V—RY
mostly taken in an equilibrium state of the system, and for a
specific choice of sequence of volumes V.

In mathematical physics, the set of observables 4 ob-
tained in this way are called observables at infinity,' because
these observables are independent of the strictly local struc-
ture of 4(x) for small x. From the point of view of probabili-
ty theory they are obtained as the limit points in the law of
large numbers, and the convergence to the limit is exponen-
tial with a rate function determined by the principle of large
deviations.? Always in an equilibrium state the set of obser-
vables at infinity form a commutative algebra pointwise in-
variant for the time evolution.

The second type of observables that are important in the
physics of systems with a large number of degrees of freedom
are the so-called fluctuation observables or macroscopic
fluctuations. Denote by w some state of the system and again
by A (x) alocalized observable, then the mathematical prob-
lem here is to prove under suitable conditions the existence
of the limit

dx A(x) =4,
v

. 1

lim —

v-r" [V
Recently’® we studied the mathematical aspects of this limit
and proved quantum mechanical central limit theorems. We
obtained a complete mathematical description of the central
limits B, (4) for all local 4. The set of fluctuations B, (A4)
forms again an algebra but this time a noncommutative one
satisfying specific canonical commutation relations. More-
over the natural time evolution of the system induces a non-
trivial time evolution on the fluctuations. At this point one
should refer to the existing literature, where one computes
fluctuations for particular examples of mean-field mod-
els.*~¢ Here we are interested in a model-independent theory
of fluctuations and we are particularly investigating the

dx(A(x) — w{A(x))) = B, (4).
V

* Onderzoeker IIKW, Belgium.
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quantum aspects. In this paper we implement and apply the
results of Ref. 3 in the algebraic approach of statistical me-
chanics, i.e., 2 mathematical theory of macroscopic fluctu-
ations is presented for systems with, what one calls, normal
fluctuations. As mean-field systems are the prototypes of
such systems we limit ourselves here to such systems, re-
membering, however, that for most of the results the only
condition is that the system shows normal fluctuations.

In Sec. II we provide the necessary material about
mean-field systems to give in Sec. III the theory of fluctu-
ations. Our main result here is that we show that macroscop-
ic fluctuations are used to consider perturbations of the equi-
librium state. In fact, we prove that the equilibrium state is
stable against its macroscopic fluctuations. Technically we
prove that the relative entropy is the relevant notion to extre-
malize in order to get the equilibrium state. We derive the
explicit formula for the relative entropy and prove thatitisa
quadratic expression in the perturbation. Remark that all
this remains within the frame of equilibrium statistical me-
chanics.

Finally in Sec. IV we make clear how the initial time
evolution of the system induces a time evolution on the set of
macroscopic fluctuations and derive some of its properties.

il. MEAN FIELD SYSTEMS

The prototype of a quantum system with normal fluctu-
ations are the so-called mean field models. Mathematically
they have the following structure. Denote by M the algebra
of m X m complex matrices and by # the C *-algebra genera-
ted by the sequence ®{'_ | M;, where M, is a copy of M. For
each XeM, denote by X, the imbedding of X in &4,

X =18 9Xele-,

where X is in the jth site.
Let p be a state of M, then we denote by w,, the product
state of # defined by

@, (X@Y® - 0Z)=p(X)p(Y) p(Z), 2.1)

for X,Y,...,ZcM. Remark also that the state p of M is deter-
mined by a density matrix that we denote by the same p, i.e.,
p(X) =trpX, XeM.

A mean-field model is given by the following local Ham-
iltonians:

Hy =3 1 < p
=Y A4 +—— i
N ,; o ;, v

ij=1
where A4; are copies of 4* = AeM and B; are copies of

(2.2)
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B * = BeM ® M such that B;; is invariant under the symme-
try B; = B;,.

The equilibrium states of these systems are given by
states w, such that the density matrix p satisfies the gap
equation’

p=e Hestre™ M, (2.3)
where
H,=A+B,,

(2.4)
B, =tr,(1®p)B,

and tr, is the partial trace over the second space.

Denote by {E |ij = 1,...,m} the set of matrix units of M
in the basis diagonalizing the effective Hamiltonian H,, i.e.,
the E;; satisfy

SE,=1, E}=E,

EijEkl = 6jkEil’
H,E,=¢€.E;, E;H,=¢E

gr  Lyltlp i

the {¢; |i = 1,...,m} are the eigenvalues of H,. For technical
simplicity, but without loss of generality we assume that the
eigenvalues are nondegenerate and that they are ordered as
follows:

€>6> " >E,.
Of course, an arbitrary element XeM takes now the form

i
The effective time evolution on M in the equilibrium state is
now given by
a,(X) =e"xe™ ", XeM. (2.5)

Denote by M,, the real vector space of the self-adjoint ele-
ments of M and by M2, the constants of the motion, i.e.,

M? ={XeM_,|a,(X) = X, forall teR}.

Then M, has a unique decomposition
M,=M%eM..

A basis for M}, is given by
ew =Ey + Ey, fu=Ii(Ey—Ey), with k<l

Any element XeM !, has a unique decomposition

X=Y3 xuew +Xufur Xu XER.
k<l

Define the linear operator J on M}, by
Je,=f; J'=—1,
and the real bilinear form s, on M |, by
5,(5Y) = —ip([XJY]), X,YeMl,.
Proposition 2.1: The bilinear form s, satisfies
(i) s, (XY =s,(Y,X), X,YeM;
(ii) 5, (JX,Y) = -—sP(X,JY);
(iii) s, (X,X) >0, for all X #0;
(iv) Xs,(e;e:;) = sp(ﬁj,f,.,j,) =08;.0;.5,(e;€;),
s, (e, fia) =0.

(2.6)
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Proof: Remark that p(E;;) = O for i#; (time invariance
of the state p), then for

i<j

and

Y=23 yies + 35Sy

i<j

one computes easily

SV = =23 Gy + %900 — ) (27)

i<j
(i), (ii), and (iv) follow readily from this formula.
To prove (iii) remark that from (2.3) it follows that

p(E;) = e Pt e e
and hence from (2.7),

(e™ P9 e P
..ﬁ”p

S(XX) =23 (x5 + %)
i<j tre

>0, if X #0.
u

Iil. FLUCTUATIONS AND STABILITY

As usual, the local fluctuations are defined by

~ 1 &
X'=— (X; — p(X)), (3.1)
Jn jgl
for all XeM,, .

In physics the interesting objects are the macroscopic
fluctuations, which are the limits for » tending to infinity of
the operators X” in the equilibrium state of the system given
by @, (2.1) with p satisfying (2.3).

In Ref. 3 we proved the following central limit theorem:

lim w,(expiX") = exp — }(p(X?) —p(X)?) (3.2)
such that we can give a meaning to
lim X" = B, (X). (3.3)

n— o

It is shown that B,, (X) is a boson field for all XeM,,, i, a
linear (unbounded) self-adjoint operator on a well defined
Hilbert space 57, satisfying the boson commutation rela-
tions

[B,(X),B, ()] =p([X,Y]).

In this way we are able to define the creation and annihila-
tion operators of fluctuations by

ak (X) = (1/2)(B,(X) FiB,(JX))
for all XeM !

[ap_ (X),ap+ ( Y) ] =P( [X:Y]) - lP( [Xy‘,Y] )’
[a; (X).a; (D] =0.
We considered also locally perturbed equilibrium states

by perturbing the Hamiltonian (2.2) by a local fluctuation,
i.e., we considered the Hamiltonians for large V:

(34)
satisfying

Hy+ ¥ =Hy+—= 3 (¥, —p(D), (3.5)
\/—’7 i=1

where H, is given by (2.2). In fact, we consider this type of
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perturbation of the original Hamiltonian together with its
equilibrium state. Clearly we get a perturbed state for a
Hamiltonian that is perturbed by a fluctuation. We will show
that the equilibrium state is stable against this type of pertur-
bations. Remark that the limit N— « corresponds to the
thermodynamic limit. We are interested in the limits N— o,
but also in the central limit n— . The order in which the
limits should be taken is always first the thermodynamic
limit (N— oo ) and then n— o0.

The thermodynamic equilibrium state (N — o) of the
perturbed Hamiltonian (3.5) is again a product state’ of &

denoted by wz" and defined by

of'(e,X) =[] p"""X)]] p(X), X,eM, (3.6)

j=1 Jj>n

where the density matrix p¥” V" satisfies again the gap equa-
tion

p”ﬁ— exp —B(H, + Y/n)

trexp —B(H, + Y /\n)

In Ref. 3 we proved also the existence and finiteness of the
following limits:

lim w!"(exp iX") = exp[ — §( p(X?) — p(X)?)

n— oo

3.7)

—BX —p(X),Y—p(D)_],
(3.8)

for all X,YeM,_,, where (Z,,Z,) . is the Duhamel two-point
function®; for Z,,Z,eM
1 (?
(Z,Z,) . =Ef ds p(Z Ya,(Z,)). (3.9)
0
One has also the existence and finiteness of the following
limits:

lim oY ((X™M*), k=123,..

whose values can be obtained from formula (3.8). In partic-
ular for k =1,

(3.10)

lim 0} (X" = — B(X — p(X),Y —p(V))_.

In the following we study the response of this type of
perturbation on the thermodynamic functions. As usual we
define the local thermodynamic functions on the set of states
of Z as follows: let w be any state of # and w,, the restric-
tion of w to ®~ M, then wy is of the form
wy(*) =troy-, with o, a density matrix on C¥'™, Then
the energy functional is

EN(CU) =1tr UNHN =0)(HN)’

the entropy functional is

(3.11)
Sy(w) = —troy logoy, (3.12)
the free-energy functional is

Fy(w) = Ey (@) — (1/B)Sy (@),
and the relative entropy of @, with respect to w, is
(3.13)

About the thermodynamic limits we have the following
proposition.

Sy(w|w,) = —tro y(logo, y —log o, x).
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Proposition 3.1:
(i) lim (Ey(0]") ~ Ey(,)) =na; (H});
(i) lim (Sy(@)") = Sy(@,))
=S, (0! lw,) +VnPo!"(H!);

(i) Tim (Fy (@]") = Fy(@,)) = — (1/B)S, (@) |@,).
Proof: Using the product property of the states and the

definition of the effective Hamiltonian (2.4), one computes
consecutively,

lim (@) (Hy) — @, (Hy))

~ tim( $ @}~ )04
1

N-w \jS
1 i N

+= z (w: —,)(By)
N.5Z,
l n N $n

+= 2 X (0 —w,)(B))
N <-4

=n(p™"" ~p)(H,) =\nw}"(H})
proving (i). Furthermore for N>n
Sy(@!") — Sy (@,)

=5,(0!") S, (,)

Y/n

=n(—tr p?"""(log p*"V" — log p)

— tr(p"""" — p)log p)

=S, (0} "|w,) +BVnal (H}),
where we used (2.3) in the last step, proving (ii). Now (iii)
follows from (i) and (ii). [ |
Remark that as far as the thermodynamic limits are con-

cerned the densities remain unchanged under the perturba-
tion, i.e.,

i (EN(w,,Y"> B EN(w,,)) o,
Ne oo N N

and analogously for the entropy and free-energy densities.
Remark also that the limits N— « of Ey, Sy, and Fy,
are all infinite for the state @, as well as for the perturbed

states o), for all YeM,,.

In Proposition 3.1 we compute the differences of the
energy, entropy, and free-energy functionals and observe
that these are the thermodynamic parameters distinguishing
the equilibrium state @, and the perturbed states a);’,' ". Re-
mark also that the free-energy difference is nothing but the
relative entropy.

Naturally we are now interested in the limit #— «, i.e.,
we are interested in the response on the thermodynamics due
to a macroscopic fluctuation as perturbation of the equilibri-
um state.

Clearly it follows from (3.10) and Proposition 3.1 that

lim (Ey()") — En(,))=Vn,
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for large n. The behavior for n— « of the entropy and free-
energy functionals are studied in the following theorem.
Theorem 3.2: For all YeM,,,

lim lim (Fy (o)) — Fy(w,))

n—ew N—w
=1lim — (1/8)S, (@} |w,)
=1B(Y —-p(Y),Y —p(Y))_ >0.
The equality sign is attained if and only if
Y=p(Y), ie, o'=a,

Proof Using the product property of the states and
(2.3) and (3.7), one gets

S, (0! @,)
= —tr @_,p"""(log 8 ,p""¥" —log ®_,p)
= —ntrp?"(logp?""" —log p)
=B\n trp*"Y + nlog[Z(Y /{n)/Z(D) ],
where
Z(Y/n) =tre P+ YAM,
Remark that the map
peR-Z(uX)
is analytic for all XeM,,. Hence

Z(Y/ﬁ)=1_£_p(y)

Z(0) n
B> (" 1
+ _Z_n—.[) ds p(Ya,, (Y)) + O(ns/z )’
where O(1/n%/?) is bounded by ¢/n*/? with ceR™*. Also
Bn trp¥ Y = Bw) (Y") + VnBp(Y)
I’

=B (Y") +n log(l +2 (1)
P ‘/;p

B’ 1
+ ‘;P( Y)’+0 (';372- .
Therefore we get

S, (wg’"[a)p)

=B} (¥Y") +n log[(l + ‘/ﬂ_ p(Y)

n

2 2 1 1 ﬂ
+&pnry 0(;13/2))( _B w

Jn
B> [ 1
=P} (Y")

2
+log(1 +£2’-n—(Y—p<Y>,Y—p<Y))~

1 n
+0(5=))
P
where we used formula (3.9).
Now we are able to take the limit » tending to infinity.

For the first term we use the result of formula (3.10) with
k = 1, for the second term we use
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lim (1 4+ x/n)"=¢€"

n— oo

and get the finite result

linmS,,(w?"lwp) = — (BY/2Y —p(),Y —p(D))._.

The expression for the free-energy difference functional fol-
lows then from Proposition 3.1. It is well known® that the
Duhamel two-point function is positive definite, i.e.,

(X,X)_>0, forall XeM,

and (X,X)_ =0 implies X = 0. This proves the last state-
ment of the theorem. [ ]

From this theorem it follows that, like the energy differ-
ence functional, also the entropy difference functional be-

haves like /7, but that the free-energy difference functional
or the relative entropy remains finite for » tending to infinity.
This shows that the latter one is the relevant thermodynamic
parameter to measure the effect of the macroscopic fluctu-
ations. This relative entropy functional is a quadratic expres-
sion in the perturbation and attains its extremum at the equi-
librium state, which is a strict extremum. This type of
stability of equilibrium states is situated between the notion
of dynamic stability,”'° i.e., perturbing with a strictly local
observable, and the notion of global thermodynamic stabil-
ity,"! i.e., perturbing with an extensive observable, propor-
tional to #. In this context our perturbation is proportional

ton.
IV. SMALL OSCILLATIONS AROUND EQUILIBRIUM

Finally in this section we make some remarks about the
time evolution of the fluctuations of the weakly perturbed

states of the type o} " considered above.

In Sec. II, we introduced the time evolution o, on M
(2.5), induced from the Hamiltonian (2.2) and explicitly
given by

a,(X) =" Xe™ ", XeM.
We defined also the algebra of macroscopic fluctuations in

formula (3.3). Clearly the dynamics e, induces a dynamics
@, on the fluctuations by the formula

@B,(X) =B,(a,X), XeM,,. (4.1)

It is immediate from this definition that if XeM is a
constant of the motion a,, then the corresponding fluctu-
ation B, (X) is also a constant of the motion &,. Therefore
we restrict ourselves from now on to the set M |, excluding
the constants of the motion. Now we diagonalize the dynam-
ics &,. Denote

2, = €t Ju ’
8, (e sp(ekl'ekl)l/z
i.e., {64, fuu|k <} is an orthonormal basis with respect to
the scalar product s, for M L. introduced in Sec. I1, then the
following theorem can be shown.
Theorem 4.1: The creation and annihilation operators
ai (&) are eigenvectors of the evolution &, and

)1/2’ ﬁd:

—~ Py File, — et A
aar(e,)=e> " af(8y).

Moreover, &, is implemented by the Hamiltonian
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H,= z (ex —€)at (8y)a, (&),

k<l

ie, @, () = e

Proof: The proofis based on a straightforward computa-

tion taking into account the following easily checkable prop-
erties:

XeM!

sa’

a; (JX) = tiaf (X),
a, J(X) = Ja,(X).

One has immediately that
&',api (X) =af (a,X).
The result follows from
a,8; =@&; cos(e; — €)1 + J¢; sin(€; — ¢;)t

and the definitions (3.4). The last statement follows imme-
diately from the commutation relation:

[a, (&;).a) (&)] =646,

=0. ]

Remark that the spectrum of the time evolution &, of
the  macroscopic fluctuations is  given by
{n spectr[H,,  ]|ne Z} and coincides here with the spec-
trum of the original physical Hamiltonian (2.2) in the equi-
librium state. For more complicated systems one has to ana-
lyze again the basic definition relation (4.1) of &, in terms of
the original o, . Clearly &, turns out to be a second-quantized
form of a,. Therefore this theorem might provide an inter-
esting method for the study of the spectrum in equilibrium
via the study of the fluctuations. We will work out this point
for a variety of models at a later occasion.

Now we look for the connection of the spectrum of &, of
the fluctuations with the explicit form of the thermodynamic
potential or relative entropy.

Consider again the decomposition, for each YeM ],

Y= z Vilu +)~’k1];<1,

k<l
then we have the following theorem.
Theorem 4.2:

lim — (1/8) S, (03" |@,) = lim — (1/B)S, (o} "|w,)

n— o n— oo

=(B/2)(Y,Y)_
1 -
iy Z Uk +}’i1)'—‘——6 .

1
£ €, — €

2585 J. Math. Phys., Vol. 29, No. 12, December 1988

Proof: The time invariance, i.e., the first equality, fol-
lows from Theorem 3.2 and

(atX’atX)~ = (X,X)~, XeM.

The second equality follows from the time invariance of the
state p implying

p(Y) =0, if YeM,.

The last equality is obtained by explicit computation, using

B(Y,Y)._ =—§ > Wt + 720) Brrsr) -

2 k<l

and

Remark that although the thermodynamic potential is
time invariant, the expectation values of the fluctuations in
the perturbed states are not, e.g., one has for X, YeM !

sa?

—~—

lim wZ’"((&TX/)”) = lim w:"y"(j(")
= —'B(X9a_1Y)~
and also
i%(X,a,YL = —p([Xea,Y]).

Finally, observe that the thermodynamic potential is
proportional to the inverse of the spectrum of the original
Hamiltonian.
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The problem of the evolution of SU(2) and SU(1,1) states is analyzed from a unified point of
view. A generalized Rabi matrix for a time-dependent SU(2)-SU(1,1) coherence preserving

Hamiltonian is also derived.

I. INTRODUCTION

The evolution of SU(2) and SU(1,1) coherent states
has been recently discussed within the framework of the the-
ory of reduced quantum fluctuations.'

Two of the present authors and a co-worker” and Ara-
vind® showed that both SU(2) and SU(1,1) dynamics can
be modeled using a simple vector representation. The
SU(2)-state dynamics can be understood as a rotation in an
Euclidean space. Correspondingly the SU(1,1) states evolve
according to an analogous rotation in a non-Euclidean
space.

In both cases the equations of motion, in the Heisenberg
representation, can be cast in the form of generalized Bloch-
type equations.*

When the system is ruled by a time-independent Hamil-
tonian, linear combination of the SU(2) or SU(1,1) group
generators, the dynamics of the Bloch vector, recently intro-
duced also for the SU(1,1) case, can be analytically studied.
If, otherwise, the Hamiltonian is a time-dependent linear
combination of the generators, analytical solutions are avail-
able in a restricted number of cases only.>®

In Ref, 7 algebraic methods of the Wei~Norman type®
have been exploited to solve Schrédinger equations with
time-dependent SU(2) and SU(1,1) coherence preserving
Hamiltonians. It has been proved that the characteristic
equations of the time-ordering procedure also can be cast in
the form of a generalized torque equation.® This fact may not
seem particularly surprising if one realizes that the average
values of SU(2) or SU(1,1) generators are related to the
Wei-Norman ordering functions. However, although ap-
parently trivial, this result may be a useful guide to genera-
lize the time-ordering procedure to generic Hamiltonian lin-
ear combinations of the generators of a Lie algebra.

We have extended the method to SU(3) coherence pre-
serving Hamiltonians.” In that context it has been shown
that the Wei-Norman characteristic equations can be cast in
the form of a torque equation in an eight-dimensional
space. '’

In this paper we will complete the mathematical analy-
sis of the evolution of the SU(2) and SU(1,1) states proving
that a Rabi matrix can be naturally obtained even for the
time-dependent case.

In fact, so far the Rabi matrix, i.e., the rotation matrix,
which specializes the time evolution of the SU(2) (see Ref.
4) and SU(1,1) Bloch vector (see Refs. 2 and 3), has been
explicitly derived only for time-independent Hamiltonians.

The paper is organized as follows. In Sec. I we derive

*» ENEA student.
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the spinorial representation of the evolution operator, while
Sec. I11 is devoted to obtaining the representation of the evo-
lution operator in the SO(3) and SO(2,1) spaces, which is
understood as the Rabi matrix relevant to the SU(2) and
SU(1,1) Bloch vectors, respectively.

. PAULI REPRESENTATION OF THE EVOLUTION
OPERATOR

In this section we will discuss the Wei-Norman time-
ordering method utilizing the Pauli matrix representation of
the SU(2) and SU(1,1) group generators.

Since we will treat the problem from a unified point of
view, we will not refer to the SU(2) or SU(1,1) group sepa-
rately but to the real split three-dimensional Lie algebra with
generators F,, F | F_ obeying the commutation relations

[FoF, 1= +2F,, [F,F_1=+6F. (1

It can be easily checked that the SU(2) and SU(1,1) groups
may be recovered withd=1and § = — 1, respectively.

The Pauli matrices for the operators Fy,, F, are readily
written down as

A 1 0 A~ (0
F""(o —1)’ F*”(o 0)’

5 ( o 0) (2.2)
- +1 0/

Let us now consider the Hamiltonian operator

B=[o0/21F+Q*0F, +Q0F_,  (23)

where the nonsingular time-dependent functions w(f) and
() are real and complex, respectively. It is worth stressing
that the operator H is Hermitian according to

HM = MH* (2.4)
where H' is the adjoint of H (transpose and complex conju-
gate) and M is the metric matrix

~ (1 0
M"(o 5)

relevant to SU(2) or SU(1,1) according to the § value.
According to the Wei-Norman technique the time-evo-
lution operator can be written as

v = explh(n)FYexplg(OF Yexp{ — F(HOF_)}. (2.6)

{The minus sign in the last exponential has been inserted
only to makg\ the comparison with previous papers, where
the operator F'_ = — F_ was considered, easier.) The ma-
trix representation of the operator (2.6) can be easily ob-
tained from (2.2) as

(2.5)
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a=(eoh e? )(é alg)(_lf (1))

- ((1 — ofg)e’ ‘Sg"h) . @2.7)
—fe=h et
It is convenient to introduce the functions®
H=e b F=fet I =ge, 2.8)
defined by the system of differential equations
F = (i0/2) ~ i80Y,
Y = — (in/2)9 — iQ*7,
FH - FF =iQ, (29)
FO) =1, F(O0)=9(0)=0,
inferred from the Schrédinger equation
14U _ fr (2.10)
dt

and from the representation (2.4) (see Ref. 6 for further
details). It is a simple matter to prove that Egs. (2.9) imply
the relation

Iil. SO(3)-S0(2,1) REALIZATION OF THE EVOLUTION
OPERATOR

We are mainly interested in understanding the evolution
of states ruled by the Hamiltonian (2.3) in terms of a gener-
alized rotation. It is therefore convenient to resort to the
isomorphisms between SU(2) and SO(3), and SU(1,1) and

SO(2,1).
The F generators are represented by the 3 X 3 matrices
0 —i 0
F,=|li o o],
0O 0 o0
(3.1
0 0 -6 0 o0 é
F.=|o o —iﬁ), Fo=lo o ——1'5),
1 i 0 -1 i 0

in the SO(3) or SO(2,1) space, according to the value of 8.
Let us notice that the above representations ensure the Her-
miticity of H as stated by {2.4), the metric matrix being now

1 0 0
M=10 1 0]. (3.2)
O 0 6

— *

g=7 ) (2.1D) Consequently the exponential operators entering the
and the existence of the invariant expression of U [Eq. (2.4)] take the matrix form

|+ 8| F | = 1. (2.12) cosh2h —isinh2h O

Consequently the expression (2.7) for Ucan be recast in e’ =|isinh2h  cosh 2k 0},
the more compact form 0 0 1

~ H* SF* . 1—(8/2)g —i(6/2)g —6g

Uz(.,y‘ P% ) (2.13) e =| —is/2)g 14 6/08 —isgl, (3.3)
readily recognized as an element of SU(2) or SU(1,1) owing g ) ‘8 , 1
to the relation (2.12), which ensures the unitarity of U ac- R 1—(8/2)f*  i8/2)f —&f
cording to the definition e = i(6/2)f7 14+ 6/ i5f ).

AA A ~ f - {f 1

L

I{\M Ut =M, N (2.14) Therefore using the relations (2.11) and (2.12) we can final-

with U being the adjont of U. ly express the evolution operator as
}
Re(F*? — 65 *%%) Im(FH**+6F*) —28ReH*F*
U=|VIim(#* —657%) Re(#*+6F%) 2ImFI*F* (3:4)
2Re ZFF* —2ImFF* |72 — 8|F |2
!
(It is worth pointing out that the equations for the functions is related to the function of the initial time ¢z, =— 0 by
h, f,and g or #°, ¥, and ¥ hold unchanged, being deter- a () 2(0)
mined by the algebraic structure of the group involved and . N
not by the dimensionality of the chosen representation.) Vo = b((:)) =U® b(((()))) ) (3.6)
¢ c

The unitarity of U, according to (2.14), can be easily
proved.

The above matrix is just the Rabi matrix for the more
general time-dependent problem.

The wave function W(#) of the system represented by
the column vector

a(t)
V() =|b(t)
c(t)
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It can be easily checked that the matrix (3.4) reduces to
the rotation matrix of Refs. 24 for a time-independent
Hamiltonian.

In fact, for } and w constant the system (2.9) can be
analytically solved, thus yielding

W=cos~Qi+i£sin-gi,
2 0 2 37
F =iQ(sin Qt/2)/(Q/2), )
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with

Q=" + 45107 .

In particular, assuming Q to be real, the operator U specializes into

[64Q% + & cos(Q1)1/Q% — (w/Q)sin(QF)
U= (w/Q)sin( Q1) cos(Qr)
(40Q/Q?)sin(Qt /2) (2Q/Q)sin(Qr)

which can be immediately recognized as the Rabi matrix
derived in Refs. 2—4 from a purely geometrical point of view.

The above result, in some sense, concludes the present
mathematical analysis of the SU(2)-and SU(1,1)-state evo-
lutions.

We have proved that in both cases the evolution can be
visualized as a rotation defined in a suitable vector space.

Furthermore the relevant Rabi matrix has been directly
deduced from the ordered form of the evolution operator
and it has been expressed in terms of the Wei—Norman char-
acteristic functions.

As a conclusive remark, let us stress that the above
method can be generalized to derive the Rabi matrix for
time-dependent Hamiltonian linear combinations of the
SU(3) group generators. In that case, indeed, we get an 8 X 8
matrix, whose elements are expressed in terms of the func-

2588 J. Math. Phys., Vol. 29, No. 12, December 1988

(3.8)
(4502/Q?)sin?(Qt /2)
— (26Q/Q)sin(Qt) |, (3.9)
[0 + 54Q2% cos(Q1)1/Q?

tions characteristic of the ordering procedure,’ although in a
very intriguing form, as a consequence of the higher dimen-
sionality of the group involved.!’
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Finite-dimensional representations of the special linear Lie superalgebra

sl(1,n). ll. Nontypical representations
Tchavdar D. Palev

Institute for Nuclear Research and Nuclear Energy, 1184 Sofia, Bulgaria
(Received 20 April 1988; accepted for publication 20 July 1988)

All nontypical irreducible representations of the special linear Lie superalgebra sl(1,n) are
constructed for any n. Explicit expressions for the transformation of the basis under the action
of the generators are given. The results of this paper together with those obtained in Paper I [J.
Math. Phys. 28, 2280 (1987) ] solve the problem of the finite-dimensional irreducible

representations of s1(1,7).

I. INTRODUCTION

In Ref. 1 (hereafter referred to as I) we gave explicit
expressions for all typical representations of the basic Lie
superalgebra (LS) sl(1,n) [ = 4(0,n — 1) in the notation of
Ref. 2] for any n = 2,3,... . In the present paper we solve the
same problem for the nontypical representations. Through-
out we use the abbreviations, the notation, and the terminol-
ogy introduced in I (see, especially, Sec. Il A). Here we
briefly recall only some main points from that paper.

We consider s1(1,n) as a subalgebra of the general linear
Lie superalgebra gl(1,n). The latter consists of all squared
(n 4 1)-dimensional matrices, whose rows and columns we
label with indices 4,B,C,D,... =0,1,2,...,n. As a basis in
gl(1,n) we choose all Weyl matrices e ,5, 4,B = 0,1,...,n. As-
sign to each index A4 a degree (A), which is zero for 4 =0
and 1for4 = 1,...,n. The generator e 5 is even (resp. odd), if
(A) + (B) is an even (resp. an odd) number. The multipli-
cation ( = the supercommutator) [ , ] on gl(1,n) is given
with the linear extension of the relations

A B C D
(= DD+ @UNO+ D o

(1.1)

leassecol = Spcean

The LS sl(1,n) is a subalgebra of gl(1,n), consisting of
all those matrices aegl(1,n), whose supertrace ( = str) van-
ishes, i.e.,

sl(1,n) = [a

aegl(1,n), str(a) = z (—-1)%a,, =O] .
A=0
(1.2)
The even subalgebra

sl(1,n)o =lin. env.{E,|E; = e, + 8,00, i,j=1,..,n}
(1.3)

is isomorphic to the general linear Lie algebra gl(n) and E;
are its Weyl generators. As an ordered basis in the Cartan
subalgebra of sl(1,n7) and gl(n) we choose E,,E,,,....E,,
and denote by E ',...,E " the dual to its basis in H *.

To give (one possible) definition of a nontypical repre-
sentation and a nontypical module, we recall (see I) the
structure of the sl(1,n) module W([m] »+ 1), induced from
the gl(n) fidirmod ( = finite-dimensional irreducible mod-
ule) ¥5({m],, ). By

[m]n+lE[ml,n+l!m2,n+l""’mn.n+l] (1.4)
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we denote the coordinates of the gl(n) highest weight

A= Z m, E '
i=1
(or the highest weight itself), corresponding to the highest
weight vector from Vy([m],, ), where

(L5)

Min 1 (1.6)

Denoteby P, the linear envelope of all odd positive root
vectors of sl(1,n),

—m, 1€Z+, Vi< ] =1,2,...,n.

P, =lin. env.{ey|i = 1,...,n}. (1.7

Let P=gl(n) @ P,. Toturn Vy([m], , ,) into a Pmodule,
we set

P Vy([ml,,,)=0. (1.8)

Then W([m], +1) isdefined to be the tensor product of the
sl(1,n) universal enveloping algebra U with Vy([m],, ;)
factorized by the subspace

I([m],,,) =lin.env.{up® v — u @ pv|ucl, peP,

UEVO([m]n+1 )}~
(1.9)

The linear space is turned into an s1( 1,#) module in a natural
way:

gluov) =gusv, gesl(l,n), uevEeW([m]),.,)
(1.10)

Thus to every gl(n) fidirmod V,([m],,,) there corre-
sponds an induced sl(1,n) module w( [m].,,). Both of
them have the same highest weight A [see (1.5)]. Every
induced module W( [m], . ) iseither irreducible [i.e., it is
ansl(1,n) fidirmod] or indecomposible. The representation
of s1(1,n), realized in the irreducible W([m] »+1) (and also
the module itself), is said to be typical.> Each W([m],, ,),
which is not irred_gcible, contains a maximal sl(1,n) invar-
iant subspace I({m],,,)#0. The factor module
W([m]l,. ,)/I([m],, ) carries anirreducible representa-
tion of sl(1,n).

Definition (Ref. 3): If I([m], . ,) is a nontrivial sub-
space, then the representation of sl(1,n) in w( [m], )/
I([m],, ) is said to be nontypical. Any irreducible mod-
ule, carrying a nontypical representation, is also said to be
nontypical.
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_ Proposition 1 (Ref. 4): The induced sl(1,n) module
W([m],.,,) is nontypical if and only if for a certain
k=12,..n,m, . ,=k—1

Il. TRANSFORMATION OF THE INDUCED MODULES
(Ref. 1)

Let
" - _ -
[m], .. My 1sMap o 1ssMppn
[m]n mlnimZn""’mnn
: - £ - L] . - . - . - -
(m)= d = (2.1
[m], MMy,
: - - Ll - - L 4 L ] E 2 » * *
. My ROT .

be a pattern of complex numbers.

Proposition 2: The basis T([m],, ) in the induced
sl(1,n) module W([m],, ,) with a highest weight (1.5)
can always be chosen to consist of all those patterns (2.1),
for which the following conditions hold (Z_, = all non-nega-
tive integers):

(N my=m, +6 - Z O, 61,6,,...0, =01,
=1
(2.2)

2) m; ;. —myel,,

2.3
Vicj=tlon—1 &)

my—m; ;. 1€,

Each pattern from T'([m], +1) is a weight vector. We

call this basis an induced basis (7 basis) and each pattern

(2.1) an I pattern. Denote by (m) | ; an I pattern which is

obtained from (m) after the replacement my—-m; + 1. In-
troduce also the following abbreviations:

[y amy ] = [mly, k=1,..n,
[mu +emy +cpmy +¢] =[m+cly, ceC,
[mu +61mpy £6,,] = [m] 1k,

ly=m; —i (2.4)

Then the transformation of W([m], +1) under the ac-
tion of sl(1,n) is completely defined from the relations [see
I, (3.1)-(3.3), (3.118), and (3.119)]

4
Ey(m)y=(my + -+ My —my_y — =My _ ) (m), (2.3)
E (m) = ki‘ e (e — L1+ DI -2y, L) 2 (m) (2.6)
kK — - —jk—17 .
k-t = Hf;};;(zi,k—l L+ DUy = L) !
E (m) = "i‘ W Uy =L D2, =L — D |2 (m) 2.7)
1 = k— 17 .
ko j=1 H:'(;;}Ll(li,k—l _lj,k-—l - l)(li,k—l _lj,k-—l) g
-[m]n+l- [m]n+l
[m], . [m—1];,
" H'I:=l(lkn—l —’lin“l) 72 '
e | [ml,_y =3 (1=6) (= D"+ 0 ' m—11,_, |, (2.8)
" [ ] ! i;} ng;&f=1(lk,n+l ““Iz‘,n+1) [ ] l
L. My my, — 1
'[m],,+1- [m]n+l
[m] _1 [m+1]-—in
n n e Mz ewr — ) |2 '
Con | [Iml,_1 }= 3 6:(=DF O, 1) | [m+1],_, (2.9)
. =1 i cic i Upner — Ly t) .
| My my +1

If for any k = 1,...,n, m;,, . , #k — 1, the above relations describe the transformations of all typical si( 1,7) modules.

IIl. NONTYPICAL REPRESENTATIONS

Ifforacertaink=1,..,n,m,, ., =k — 1, then thein-
duced representation is indecomposible. The corresponding
sl(1,n) module W([m],, ) contains a maximal invariant
subspace I([m], +1) and at the same time there exists no
complement to 7([m], +1) subspace, which is si(1,1) in-
variant. The factor module #([m], +1 y/I([m], 1) car-
ries an irreducible nontypical representation of sl(1,%7). In
order to write the formulas (2.5)-(2.9) in the correspond-
ing factor space, we now proceed to determine the maximal
invariant subspaces I([m], . ).

2590 J. Math. Phys., Vol. 29, No. 12, December 1988

|
A. Maximal invariant subspace

Let V([m],)=V([m,,,....m,, ]) be a gl(n) fidirmod
with a highest weight m,E'+ --- +m,,E". Consider
W([m]l,. ) asa gl(n) module. The following proposition
was proved in L.

Proposition 3: The induced sl(1,7) module
W([m],,,) decomposes into a direct sum of gl(n) fidir-
mods as follows:

W([m]n«}- H ) = Z L4 V( [m}n)’

imj,

a.n
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where the sum is over all possible gi(n) signatures [m],,
which are compatible with (2.2).

Proposition 4: For each term in the decomposition (3.1)
either

V(Iml,)CI([ml, 1)
or
V([m],)NI(Im],, ) =0. (32)
Proof: Let Ulgl(n)] be the gl(n) universal enveloping
algebra. If Ox#xeV([{m],)NI([m],,,), then also

Ulgl(n))xel([m], ) and since U[gl(n)]1x = V({m],),
(3.2) holds.

Proposition  5: Let [m—n+41), ,=[m,,
—n+1,..m,,,, —n+1]. Then

V(lm —n+11,)CI([m], . )- (3.3)

Proof: By construction of W([m],,,) the lowest

weight vector x, of W([m],,,) belongs to
V([m —n+1],) and it can be obtained from any other
xeW([ml,,,) with a properly chosen element
uel, ie, xs=ux. Let O;néxef([m],,Jr ). Then

ux = x,eV([m—n+1),)NI([m], ) and according to
Proposition 4, (3.3) holds.

Proposition 6: The maximal invariant subspace has a
zero intersection with ¥V([m],, ),

v(iml,, . )NI([m],,,)=0. (3.4)

Proof: We use that W([m],,+l) =Ue Vy([m],, )
=U(leVy(lml,,))=UV([m],, ). Inparticular, for
any nonzero xe€V([m],.,), Ux=U-Ulgl(n)]x
=UV([m],, ) =W(m],, ). Therefore, if
O0#xeV([m], . )NI([m], ), then Ux = w(lml,, 1)
CI([m], ), which is impossible, since we consider non-
trivial invariant subspaces I( [m],). Hence (3.4) holds.

Denote by W([m],,,) any complement to
I([m],, ,) subspacein W([m],, ), ie,

W(ml,, ) =Wml,,)eI([ml, ). (3.5

Let &, =&(x)eW([m],, )/I(Im],,,) be the equiv-
alence class of xe W( [m]l, 1)

Proposition 7: The mapping f W([m],,,)
~W([ml,, )/I([m],, ) defined as f(x) = £, is an iso-
morphism of W([m], . ) on W([m], ,)/I([m}, ).

Proof: 1t is evident that f is linear. Suppose that
S(x) =fp). Then Sfix—y)=§,_,=0, ie.,
x —yel([m], ). On the other hand, x — yeW([m],, )
and, since I([m], +1) and W([m], , ) are linearly inde-
pendent, x —y =0.

Choose
e,...,e, to be a basis in W([m], . ), (3.6)
Jieo Sy tobeabasisinj([m],,+,). (3.7)

If ¢eW([m],, )/I(Im], ), according to Proposition 7
&=¢§,, where xeW([ml, ). Therefore,

E=§, =§(i a,-e,.) = Ep: ag,.

i=1 i=1
Moreover, 2f_,a;£, =0 implies 2f_ \a.eel([m], +1)
which is possible only if all &, = 0. This shows that £ ,....5,
constitute a basis in the factor space.

2591 J. Math. Phys., Vol. 29, No. 12, December 1988

Let g be any element from sl(1,n). Since I([m], +1) 18
si(1,n) invariant,

p q q
ge; = zAjiej + szif;'! gfi= ZCﬂfj
Jj=1 j=1

j=1

(3.8)

The transformation of the factor space under sl(1,n) is de-
fined to be g[£(x) ] = £(gx). Therefore,

gléle)] =£(ge) = §(_§P:Aﬁej + "ilbﬁﬂ')

=1

= S 4,80, (3.9)

Jj=1
We have used the circumstance that £( f;) = 0 in the factor
space. As usual we shall identify W([m],,,) and
W(lml, .. )/I([m], +1) (see Proposition 7), replacing
£(x) by x. Then the relation (3.9) reads

P
ge; = Y Age;.
=

We conclude the following corollary by comparing (3.10)
with (3.8).

Corollary: In order to obtain the transformation of the
factor space W([m],,H)EW([m],,+1)/7([m],,+1) un-
der the action of the sl(1,n) generators one has simply to
replace in (3.8) all basis vectors of the maximal invariant
subspace f,..., f, by zero.

Consider the indecomposible
W([m],, ), corresponding to

(3.10)

sl(1,n) module

m, ,=j—1&1,,,+1=0. 3.11)
Since

Lpir>hy o> >hpir> >l (312)
all other /, , . ; + 1 are different from zero, i.e.,

bewir 1540, VEk#j=1,.,n (3.13)
We recall that the gl(n) fidirmods V([m],) of

W([m] «+1) [see the decomposition (3.1)] are in one-to-
one correspondence with all admissible 6-tuples {6,,...,8, }
={6},, i.e., those O-tuples, for which

1 6,,...,8, =0,1,

(2) [m], is lexical > m,, —m,,,,€Z,,
i=1.,n—1 (3.14)
Therefore, we set
V(lml,)=v{6},)=v{6,..6,}) (3.15)
and write instead of (3.1)
Wiml,, )= Y 'eV{é}). (3.16)

By, 0, = 0,1
The prime in (3.16) is to recall that the sum is only over the
admissible &-tuples. _

Introduce the following two subspaces of W([m],, , ,):

Wiml,.1)e= 3Y' eV{6},), (3.17)
8,,...8, = 0,1
6,=0

Wiml,., )= Y erdel). (3.18)
,,....6, =0,1
6;=1
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Then
W(lml, ) =W(ml,, )o® W(ml,, ).  (3.19)
Proposition 8: The subspace w([m], +1)1 is an invar-
iint si(1,n) sub_module of W([m],,,) and, therefore,
W( [m]n+ 1 )ICI([m]n+ 1)
Proof: Let (m) be an I pattern, corresponding to the 6-
tuple {6,,...,8, }. From (2.2) one derives [see I, (2.61)] that
for every i = 1,...,n,

1 n
6; = z (M i1

n—1k=1

—my, )'
(3.20)

The set of all / patterns with 8, = O (resp. with §; = 1) con-
stitutes a basis I“([m],,“)0 in W([m],,+1)0 [resp.
T([ml,,,), in W([ml,, )] Let (m)el([ml,, ),
Then

- mkn) - (mi,n+1

mkn) -

Z(mkn+l _mjn)=1-
(3.21)

For this particular 7 pattern e,, (m) is a linear combination
of all I patterns

[m]n+l
[m— l]i,n
[m_ 1]n—1 !

n 1 (mj,n +1

(m') = if=1,m. (3.22)
m;; — 1

Let {6},=1{6,..,6.} be the #-tuple, corresponding to

(m’). Since m}, = m,, — 1 + 8, and i#j,

n

1 r
9} = 1 kzl(mk,n+n —my,) — (mj,n+1 —mj,)
E(mkn+l —my, +1—=58)
n— 1 k=1
— (M —my, + 1)
1 n
= z (mk,n+1 _mkn)
n—1=,
( Jn+1 ) 9 =1
Thus (m' )el"([m],,+l), and, therefore, e,,(m)
eW([m],, +1)1. Similarly one shows that, if

(m)eW([m],,__t 1)1, then also e(,,,(m)eW([m],,+ ) We
conclude that W([m], , ,), is anontrivial sl(1,n) invariant
subspace of W([m], +1). Since, moreover, any nontrivial
invariant submodule ¥is contained in the maximal invariant
subspace I([m], . , ) [otherwise I([m], 4+ 1) will bea prop-
er subspace of a larger invariant subspace I([m], . ) + V],
we have

W([m]n+1)1cj([m]n+1)- (3.23)

Proposition 9: Let V,,V,,...,V, be gl(n) fidirmods, all of
them being with different signatures. Consider
V=V,eV,e -0V, (3.24)

as a gl(n) module. Then for each nonzero xeV there exists
i=1,..,n and ueU[gl(n)] such that 0F#uxeV,.
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Proof: The space Vis a reducible gl (n) module. Since all
signatures ( = highest weights) of V; are different, ¥ con-
tains only » highest weight vectors x;€V;, i = 1,...,r (cer-
tainly each highest weight vector is defined up to a multipli-
cative constant; we somehow fix this constant). Consider the
subspace

Vo= Ulgl(n) ]x={ux|ucUlgl(n)1}. (3.25)

By construction ¥, is a gl(n) submodule of V. Since every
finite-dimensional gl(#) module has a highest weight vector,
there exists an element ueU[gl(n)], such that x, = ux is a
gl(n) highest weight vector from V. Therefore, x, is propor-
tional to one of the vectors x,,...,x,, i.e., X, = cx,€¥V;, ceC.
Thus uxeV,. ]

Proposition 10: Let W([m], +1) be an indecomposible
sl(1,n) module, for which (3.11) holds:

if V([ml,)CW(ml,, )o
then V([m],)NI([m],, ) =0. (3.26)

Proof: Together with the indecomposible W([m), +1)
we introduce another induced module W([#], . ,), where

[m]n+1 = [ml,n-+—l +c7""mn,n+l +C]E[m+c]n+l'
(3.27)

We fix the constant ceC in such a way that
Vk=1l,.,n, My, Ak—1T,,,+1#£0. (3.28)

Therefore, W([#1], , ) is typical and hence an irreducible
sl(1,7) module. Let (72) = (m + ¢) be a pattern, which is
obtained from the I pattern (m)eW([m], , ,) after the re-
placement m; —m; + c. Clearly, the set of all patterns
(m)=(m+c), (mel(lm],,,) gives the I basis
T([#],,,)in W([Al,, ). _

Let ¥([m],)=V({6},)CW([m],, ) beagl(n) fi-
dirmod of degree N [see I, Definition 2], i.e.,
6,+ -+ + 0, = N. Assume for definiteness that in the /
pattern (m)eV([m],) 6,.0,,. ,0, = 1. Consider the 7
pattern (m) = (m + c)eW( [m],,+ 1) corresponding to
(m). From the irreducibility of W([m], +1) it follows that

30s#ueU such that 0s£u(m)eV([m],, ). (3.29)
Without loss of generality we can assume that u is a
homogeneous polynomial of degree N on ¢,, and depends
otherwise only on the even generators, corresponding to the
simple roots, namely E;; . ;, i =1,...,n — 1. In such a case,
using Eqs.(2.7) and (2.9), it is not very difficult to show that

N
u(m) = [[ Uipns1 + DFI(m) ]x,, (3.30)
k=1

N -~
u(m) = [[ Uipn+1 + D) 1X#0, (3.31)

k=1
where X,V ([7],, ,) and x,e¥([m], . ,) are the highest
weight vectors of V([m], , ,) and V([m], ), respective-
ly. The function f[(m)] (resp. f[(#/)}]) depends only on
the differences m; — m,, (resp. m; — My,), i<j=1,..,n
and k</ = 1,...,n. Since (m) = (m + c), the latter gives

SIm)yl =f[(m)]. (3.32)

From (3.31) we conclude that [ (/)] #0 and, therefore,
also
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fl(m)]+0. (3.33)

Assume that ¥([m],)CW([m],, ), Recall also
that V([m],) is of degree N. Take the I pattern
(m)eV([m],), for which 6, .0, ,...,0, are equal to one.

Since 6; =0, jE(iyiz--iy). Therefore [see (3.13)],
yn i1 + 1) #0 for each k = 1,...,N and hence
N
II Gins + D)0 (3.34)
k=1

Inserting (3.33) and (3.34) in ( _%.30), we conclude that for
any I pattern (m)eV([m],)CW([m], ), there exists
from the sl(1,n) universal enveloping algebra U, such that
0#u(m)eV([m],, ). Therefore also

YO#£xeV([m],)CW([m],, Do

(3.35)
30s£ucU such that 0#uxeV([m], ).

Suppose that for a certain ¥ ([m],,) C W( (ml,.1)o

V(Iml,)NI([m],, ) #0 (3.36)
and let O;éer([m],,)ﬂf([m],,H). Choose ucU to be
sugh that (3.35) holds. Then OsuxeV([(m],,,)
NI([m],, ), which contradicts Proposition 6. Hence
(3.36) is impo§sible, ie., (3.26_) holds. [ |

Theorem: I( [m]n+l) = W([m]n+l)l-

Proof: Proposition 8 asserts that

W(lm),, . ),CI([m],,.). (3.37)

Suppose that xeT([m],,+ ). Then [see (3.19)] x can be
uniquely represented as x=2x,+ X, where
xoGW( [ml, 1 )oandx,eW( [m]n+ 1)1- Since [see (3.37)]
X el([m],,+,),alsox X, —erI([m],,+1),1e,

xe Y eV}, (3.38)
1By =0,1
0j=0
Suppose that
Ix=x,+ xlej( [(m]. 1),
such that Oaéxoeﬁ’( [m],.1)o (3.39)

Since W( {m],, ) is a direct sum of gl(n) fidirmods
V({6},), all of which have different signatures, we can ap-
ply Proposition 9. Let wu,U[gl(n)] be such that
0#ux,cV({6},)=V(Iml,) CW([m], . ,)o Inthesame
time uox,€l([m], , ;). Thus we have

V([ml,)CW(ml,.1)o
and
V(Im],)NI([m],,,)#0, (3.40)

which according to Proposition 10 is impossible. Hence the
assumption (3.39) cannot hold, i.e., x,=0. Therefore,

=x,eW([m],, ). We have shown that, if
JceI([m],‘+ 1) thener([m],,+ Do ie,

W([m]n+l)131([m]n+l)' (3.41)
The inclusions (3.37) and (3.41) yield

I([m],, ) =Wml,, ). (3.42)

|
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B. Transformation-of the nontypical modules. First
basis

We recall that we are considering an indecomposible
sl(1,n) module P_V([m],, +1), corresponding to the case
m;, ,, =j— 1 or, which is the same, to /;,, , ;, +1=0.In
order to apply the Corollary we have first to choose a com-
plement to I([{m], ;) space in W([m],,+ ). To this end
we combine Eqs. (3.19) and (3.42), writing

W([m]n—{—l) = W([m]n+1)o®7([m]n+l)- (3.43)

Therefore, as a complement space W([m], , ) [see (3.5)]
we take the subspace W([m], . ), ie., we set

w(lm),..)=Wml,.\)o (3.44)

In order to obtain the transformation of the factor space
under the action of the sl(1,#) generators (see the Corol-
lary) we have to replace everywhere in (2.5)-(2.9) the basis
vectors (m)eW/( [m],. 1) ie, all I patterns, correspond-
ing to ; = 1, by zero.

Proposmon 11: Let W([m],, ,) be an indecomposible
sl(1,n) module, corresponding to the case (3.11). Consider
an I pattern (m)eW( [m], ;1) for which 6, = 0. Then

[m]n+l
[m_ l]i,n
[m - l]n—l

(m) = EW([m]n+l)0

m;,,—1

if and only if i#j. (3.45)

Proof: For (m) both 6, = 0 and §; = 0. Therefore [sce
(3.20)], we have

i n
Z (mk,n+l _mkn) - (mj,n+1
1

—my,) =0.
(3.46)

Taking into account that #,, = m,, — 1 + 6,,, and using
(3.46), we obtain for 8, of (),

- 1 - o
9,' n_1 kzl (myyy —My,)

- (m'n+l _iﬁjn)

z (Mmy oy —my, +1—256;,)
n—lk_l
— (M1 —my, +1-8;)
n—lkgl (Mins1 = My ) — (M — My, )
+6; =8y (3.47)

Thus 8, = 0if and only if i#j, i.e., (3.45) holds.
In a similar way one proves the next statement.
Proposition 12: Let W([m], , ;) be an indecomposible
sl(1,n) module, corresponding to the case (3.11). Consider
an I pattern (m)eW([{m],, | ), for which 8, = 1. Then
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[m]n+l
[m+1]_.,

(m)=|[m+11,_, | eWUml, 1)o (3.48)
m,, +1
if and only if i#j.

Clearly, the subspace W([m], . ,), is invariant under
the action of all even generators of sl( 1,7). Therefore, apply-
ing the Corollary, we conclude that the relations (2.5)-
(2.7) remain unaltered in the factor space. From (3.48) and
(2.9) it follows also that W [m], 1) is closed under the
action of e, and, hence, it is closed under the action of all
odd positive roots. Therefore, the relations (2.9) and [I,
(3.117) ], considered as transformations of the factor space,
remain also unaltered.

Turn now to the transformation of W([m], +1)ounder
e,o [see (2.8)]. Let W([m],, ) be the indecomposible
module, corresponding to the case (3.11). Then (Proposi-
tion 11) all terms in the right-hand side of (2.9), corre-
sponding to i#j, are vectors from W([m], +1)o However,
the I pattern

[m]n+l
[m+ 1]j,n
[m+11,_, [eW(Im],, )

my, +1

and, therefore, the term in the right-hand side of (2.9), cor-
responding to i =, is zero in the factor space. Hence the
transformation of the factor space under the action of e,
reads

[m]n+l
(m],

enO [m]n—l

m;

_ i (1—6,)( TR

=1

| e O S Pl
x nk_l(k, 1 )
Hk#i:l(lk.n+l _Ii,n+1)
[ [m]n+l
[m_l]i,n
X|[m-1}],_, (3.49)
| my 1

We underline that (3.49) holds only as-a transformation of
the factor module, when W( [m], . ) is an indecomposible
sl(1,n) module, corresponding to (3.11). Observe that
(3.49) can be written also in the following form:
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[m]n+l
[m],

enO [m]n—l

my,

=Y 1=-6)(=D"" 718U, + D]

i=1

Hz;i(lk,n—l _lin_l) 12

Z#i=1(1k,n+l _li,n+1)

[m]n+l
[m_ I]i,n

X1 [m—1] (3.50)

n—1

m;,, —1

The advantage of the last relation stems from the observa-
tion that it gives the right law of transformation both for the
typical and for the nontypical sl(1,n) irreducible modules.
Indeed, if W([m], +1) is a typical module, then for any
i=1,..,n 1, +1#0 and, therefore, 1 —8(/,, ., + 1)
= 1. Thus (3.50) reduces to (2.8). If W([m],, ,) is inde-
composible and corresponds to the case (3.11), then
1, Vi#j=1,.n,
0, for i=j,
and (3.50) reduces to (3.49). Exactly in the same way one
proceeds in order to write the expressions for all odd genera-
tors [see I, (3.117) and (3.118)] in the factor space
w( [m], ., )/I([m], +1). Assuming that in the typical
modules W([m], +1) the maximal invariant subspace
I([m] »+1) = 0, we can write in a unified form the transfor-
mations of the typical and the nontypical fidirmods under
the action of the algebra. We formulate the results, obtained
so far, as a separate statement.

Proposition 13: The finite-dimensional irreducible mod-
ules W([m], , ;) of the Lie superalgebra sl(1,n) are in one-
to-one correspondence with the set of all complex n-tuples

[m]n+ 1 = [ml,n+l’m2,n+l""’mn,n+ 1 ]’

such that m,,  ,

1-60,,., +1)={ (3.51)

(3.52)

for all i <j = 1,2,...,n. These numbers are the coordinates of
the highest weight

— M, l€Z+9

A=Y m,  E'
i=1
of the corresponding fidirmod, which we denote by
W([m],, ). ThebasisT'([m],, ,)in W([m], ) is giv-
en with all patterns

(3.53)

[m]n+1 ml,n+1’m2,n+1"-"mn,n+l
[m], MMy,
: [ ] Ll L] L] . [ ] L] . . L] .
(m)E = ’
[m], my;sMy;s...sMy;
. . . L] L] e e o L] .
L My RV

= (3.54)
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consistent with the following conditions: 4) m;, , —myel,, my—my €L,

(1) the numbers m,,, ,,m;,, .M, , ., are fixed Vi<j=1..n—1 (3.55)

and label the module W([m],, ,); ) .
The transformation of W([m], , , ) under the action of

Q) my, =m .\ +6,— i 6., 6,0,,..,6,=0,1; the even generators is completely determined from relations
’ K=1 (2.5)-(2.7). The odd generators e,, and ¢, p=1,...,n
(3)ifm;, ., =j—1,then 6, =0; transform the fidirmod W([m], . ,) as follows:
]
-[m]n+l-
[m],
: n n-—1 P 3 1
epO [m]p — Z cen 2 (1-0,-")(—1)6|+ +9:n_ [1_5(li",n+1 +1)]
=14, S1=1 =1
[m]p—l
L My
n l'[r—} = (1 r— _Iir—l)nr i= (Ir_li r— ) 172
X I SCpiy_y) |t 2ot - fmvs B e
r=p+1 ;;ei,=|(lkr - Ii,,r)nk#i,_,=l(lk.r——l - Ii,_,,r—l -1
i [m]n+l
[m_I]i,,,n
0 oy U =L DS Ny — 1, — 1) |2 :
"k;e" 1 U on M= 1 Up 1 fad [m—11,, |, (3.56)
s, 1 Uins = line DWW Uiy = 1,,) (m—-11,_,
L my—1 ]
’-[m]n-f—l-
[m],
: n n—1 P O+ +6, _,
| Iml, [=3 5 ¥ 6,(-D " Uppr + 1)
=10, =1 =1
[m]p—l
L M

>< InI S(ir,ir—l) l-I;;é}r—l=1(lkv"_1 __I'.rr’)n;#ir=1(lk’ _Iir—l’r_l + 1) 2

r=p+1 ;#i,:](lk, — Ii’_,)H;;}'_l=l(lk”_l — li,__l,r—l + 1)
[ [l ]
[m+11_, ,
0 U =L DBy — 1) |2 :
i T AT TR [m+11_,,1. (3.57)
k#i"=1(1k'n+l - i”’n+l)ni¢ip=l(IkP -IipP) [m+ 1]p—1
L m+1

In the above relations

1, for i<,

Sy = {
GD=121 for is).
It is worth writing the transformations (3.56) and (3.57) in the case p = n, because they, together with (2.5)-(2.7),

determine all other generators through the supercommutation relations. These relations were already given [see (2.9) and
(3.50) ], but for completeness we write them once more here,

(3.58)
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-[m]n+l- {ml, .,
[m], [m—1],
n ! nn;l In— —l‘n _-_-1 172 iLn
ewo | [ml],_, =2(1"91)('-1)6'+ +elﬁl[1_5(li,n+1+1)] ESRC ' ) [m-—1],_,{,
. i=1 Hz¢f=l(lk,n+l "I;,n+1) . "
. my,, | my, —1
(3.59)
In[’n]na-l-' [m]n+l i
[m]" n Hﬂ—l([ -1 ) 172 [m+l]—'f,ﬂ
€ {m}n—l = z 0[(___1)9;+--.+9{vA¢(1’_’n+l +1) k=1\tkn—1 in [m+1]"~1 . (3.60)
. i=1 Hz¢i=1(lk,n+1 "'Ii,n+1) .
L My my; + 1

C. Transformation of the irreducible modules. Second
basis

We now proceed to introduce a new basis in the fidir-
mods W([m],, ), which leads to more symmetric expres-
sions for the odd generators, leaving the expressions (2.5)—
(2.7), for the even generators unchanged.

Consider first a typical sl(1,n) module W([m],, ;).
Then/,, , + 1#40,Vi=1,.,n. Weset

[mln+1 [m}n-i—l
(ml, ) (m],
[m]n—l = H (lk‘”+l +1)6k/2 [m]n-—l *
- k=1 -

my, my,
(3.61)

where {8,,...,6,}={6}, is the 6-tuple, corresponding to the
gl(n) submodule V([m],)CW([m],, ) [see (3.20)].
The B-tuple of V([#],)=¥([m — 1],,) can be easily ob-
tained from {6},,

0, =0, + 6, k=1,.,n (3.62)

Therefore

[m]n+]
[m - 1]i.n

[m—1],_,
m” —" 1

= (li’"+l + 1)0/2+l/2 H (lk,,,+[ + I)Bk/Z

kAi=1

{m]n+1
[m_lli,n
X|m—11,_, |- (3.63)

my, — 1
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Taking into account (3.61) and (3.63), we obtain from
(3.59),

[m]n+l
[m],

€0 [m]n——l

my,

=3 (1= (— 1o+

=1
ni;i(lk,n_! —I,—1) |2

nz:;éi=l(1k,n+l _ll'.n+l)

X(li,n+1 + 1)112

[m}n+1 \
[m_ I]i,n

X [m_lln-l : (364)

my —1 )

Similarly,

[m]n+l
[m + 1] —in
[m + 1]n~1

my; +1

=(li,”“»l_|_1)a9,«/2_1/2 I-I (Ik,,,+,+1)9"/2

ks#i=1

[m]n+1
[m+ 1] — b1
x| m+11,_, |- (3.65)

my; + 1
Substituting (3.61) and (3.65) in (3.60), we have
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[m}, ..
[m],

€on [m]n—l

my,

_$ (=t

i=1

HZ;{(lk,,._l — 1) 72

HZ#i=l(lk,n+l - li,n+1)

XUppyr + D2

[m]n+1
[m+1]_,,

X[[m+11,_, (3.66)

m,; +1

Consider now a nontypical module W([m], . , ), corre-
sponding to

Lpir +1=00, ., +1#0, Vk#j=1,..n
(3.67)

In this case we set

[m]n+l [m]n+l

[ml, ; [m],

(mly_i [= I Uknsr+D**|ml,_, | (3.68)
. xkEj=1 .

my, my,

Then for i##j

[m]n+1
[m—1],,

[m'_ 1]n—l

my; —1
=(li,n+1 +1)1/2 H (lk,n+| +1)91/2
k#j=1

[m]n+l
[m - I]i,n

X|m-11,_, (3.69)

m;,—1
Inserting (3.68) and (3.69) in (3.59) we obtain
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[m]n+l
[m]n
enO [m]n—l

(1 _0’)( _ 1)9u+"'+3i—l

1

3
™= = =

i

-
i

G2 ey =l = 1) |72

H:#i=l(1k.n+1 —lini1)

X1 + D2

[m]n+l
[m - I]i,n
(3.70)

X [m—'l]n—l

my —1 /

Adding to the right-hand side of (3.70) the zero term

172

M2 Unoy — b = 1)
et et — L)
[m], .
[m_l]j,n
X|[m-11,_, |,

(Ij,n+1 + 1)l/2

(3.71)

my,—1

we end up with the same relation (3.64) as for the typical
case.
In a similar way, taking into account that for /5j

[m]n+l
[m+ 1] — iLh
[ + I]n——l

my +1

=Upir + D72 I Uinsr + D

ksj=1
[m]n+l
[m+1]_,,

Xjlm+11,_, | (3.72)

my, +1

wederive (3.66), i.e., also in this case we obtain no difference
between the relations, corresponding to typical and nontypi-
cal modules.

We summarize the results, obtained for the second ba-
sis.

Proposition 14: The finite-dimensional irreducible mod-
ules W([m], . ,) of the Lie superalgebra sl(1,n) are in one-
to-one correspondence with the set of all complex n-tuples
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[m]n+1E[ml,n+l’m2,n+1""’mn,n+1]’ (3.73)
mi,n +1 = mj,n+ lez+)
foralli< j=1,2,...,n. Thebasisin W([m], , ) canbecho-

sen to consist of all patterns

F[m]n—-}-l Myny15Mopp1sesMyn i
[m]n m1n9m2n""’mrm
: . » * L] . . L] . - L] L]
|m)= = )
[m], myisMyse..sm;;
: . . o L . L] L] L] . . L]
L My RLOT
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which are consistent with the conditions (1)~(4) in (3.55).
The transformation of the basis under the action of the su-
peralgebra sl(1,n) is completely determined from the rela-
tions (3.64) and (3.66) and the expressions for the even
generators (2.5)—(2.7), which hold also in the new basis.
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Infinite-dimensional symmetry algebras and an infinite number of conserved
quantities of the (2+1)-dimensional Davey-Stewartson equation
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An infinite-dimensional symmetry algebra of the Davey-Stewartson equation is explicitly
presented. It is shown that this algebra is a gauge generalization of the symmetry
transformation for the Schrodinger equation, and that the Virasoro algebra appears as the
subalgebra. An infinite number of conserved quantities associated with the transformations are

also obtained.

I. INTRODUCTION

It is known that the Davey-Stewartson (DS)! equation
can be solved by the inverse scattering method® and the
Bicklund transformations.> The soliton solution and the
multisoliton solutions have been explicitly found.

The quantum theory of the DS equation has been dis-
cussed by using the quantum inverse scattering method, and
it is shown that the system has the generalized Yang-Baxter
algebra.*

Recently Champagne and Winternitz® have shown, us-
ing the numerical method, that the DS equation has an infi-
nite-dimensional symmetry transformation group.

In this paper we will show that the infinite-dimensional
symmetry group can be easily obtained as the gauge general-
ization of the symmetry transformation for the Schrédinger
equation, and that the DS equation has an infinite number of
conserved quantities associated with the tranformations.

In Sec. II we will review the symmetry transformations
of the Schrddinger equation and show that the equation has
linearly time-dependent, dilational symmetry transforma-
tions. In Sec. III we will show that in the DS equation the
symmetry transformations of the Schrédinger equation can
be generalized to the infinite-dimensional symmetry group
with arbitrary functions of time. Explicit forms of an infinite
number of conserved quantities will be given. In Sec. IV we
show that the infinite-dimensional symmetry group is a
gauge transformation with time-dependent gauge functions,
and it is pointed out that the gauge fixing is necessary in the
discussion of the DS equation.

Il. THE SYMMETRY ALGEBRA OF THE SCHRODINGER
EQUATION

A. The symmetry algebra of the classical free particle

First of all we will discuss the symmetry algebra of the
classical free particle defined by the Lagrangian

m & (dx'\?
L 2 i;| ( dt ) ’
where d is a dimension of the space. As is well known this
system has the following five kinds of symmetry transforma-
tions:
(i) space translation,
t'=t (2.2)

(ii) time translation,

(2.1)

x'=x"+aj,
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xXi=xt, t'=t+e¢y (2.3)
(iii) rotation,
d
xi=x— > wix), t'=t,
. /=t (2.4)
;= —@
(iv) the Galilei transformation,
x'=x"+adlt, t'=¢ (2.5)
and (v) dilatation,
X'=+ex, t'=0+e)t, (2.6)

where ag, ai, £, €,, and ;] are arbitrary infinitesimal con-
stants.

Constants of motions associated with the symmetry
transformations are given, respectively, by

(1) space translation,

p'=mix, (2.7)
(ii) time translation,
m d (dxi)z 1 d 2
= -] =— % 2.8
2 = \dt 2m ,-;1 (p ( )
(iii) rotation,
LW = y(p'x/ — phx; 29
(iv) the Galilei transformation,
G'=p't — mx’, (2.10)
and (v) dilatation,
1 ¢ : :
D=—Y {tp")? — mx'p}. 2.11
- ,-; ) P (2.11)

Furthermore it can be easily shown that the equation of
motion for the free particle is covariant under a new trans-
formation defined by

(vi) time-dependent dilatation,
x'=(141e0x, t'= (141501, (2.12)

where ¢, is an infinitesimal constant. A constant of motion
associated with the new transformation is found to be given
by
d
F=zl— S {e?(p)? + m*(x)? — 4mexpT.  (2.13)
m =1

Vector fields that generate the transformations are given
by
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(i) space translation,

el
'’
(ii) time translation,
a=9.
at’

(iii) rotation,

L =i(x"—i—x"—a—.);
2 ax’ ax’

(iv) the Galilei transformation,
Gi=t 2,
ax'
(v) dilatation,

(2.14)

a2 8x
and (vi) time-dependent dilatation,
/ﬁ\'= i t2 i + L tx! __3_

X — .
2 a9 2 ax'
These vector fields are shown to satisfy the Lie algebra

Bip1=0, [BH]1=0, [p.LU¥]=48%*— 8%,
.Gl =0, (F\D]1=1, [H'F]=1G"
(AL =0, [HG1=p, [HD]=4H,
[HF]1=D,
[Z G T tki1] = (ST ) ST ik} _ 5T, Uil
2 (2.15)
+ 8L U,
(B1064) =4 = 546 4 546, [219,5] =0,
[2 [i‘n,}}] =0,
[ai’aj]=09 [a A]‘: _%ai’ [ai’ﬁlzor
[D’F] =

B. The symmetry algebra of the Schrodinger equation
The Schrodinger equation of the free particle is given by
2 d 2
AP S (Y
at 2m =h\ox'

It can be shown that this equation is covariant under the
above-mentioned six kinds of transformations,

(2.16)

xi=x +a0—wx’+a,t+ lex' + le,tx’,
t'=1t+ €+ &1t + Jeut %

provided that the wave function 3 transforms under (2.17)
as

¢’(x't')=[l+im i dx—ELg
’ #i ! 4

i=1

(2.17)

+ =2 2 [ dt+— m z (xH)? ]¢(x,t). (2.18)
i=1

On the right-hand side of (2.18) the third term repre-

sents the transformation property of ¥ under the dilatation.

It is well known that ¢ transforms with a linearly coordinate-

dependent phase under the Galilei transformation and that it

gives a ray representation of the Galilei transformation
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group.® The last term defines the way ¢ should transform
under the time-dependent dilatation. Futhermore it is easily
shown that (2.16) is covariant under a constant phase trans-
formation of 1,

¥ =(1+id)¢.
Now we will define functions of time a’(¢) and £(¢) as
ad(t)y=a, +ait,
e(t) = &g+ &4t + Loyt %
then infinitesimal transformations (2.17) and (2.18) (in-

cluding the constant phase transformation) are expressed in
terms of a’(?) and £(¢) as follows:

(2.19)

d
x'=x'— ¥ wix/+d'(t) + R,
, i=1 (2.20)
t'=t+ (1),
and

d . i i
) =[1—L () +—A4 4+ —
Y(x,t") [ 45()+ﬁ +ﬁm

[a(r)x +E0 5 (x")z}]:p(x,t), (221)

i=11
where &', £, and so on, represent derivatives of a'(t), £(¢)
with 2.
Vector fields that generate transformations (2.20) and
(2.21) are given by

=2 n=9 21fJ1=i(xii__xfi),
ox'’ or 2 ox’ ox'
A a i .
Gl= —_ — i _ %k
g +hmx(¢ 3 Y a¢*)
~ ad 1 ;40 d
D=t—4 —x'—— —|tp— *
a2 o (¢a¢ v a¢*)
(2.22)
| a 1 ., d ad ad
Pesrdytw Aoy 2y D)
2 8t+2t ax 4”’/’a¢+¢ ay
’ — __ a*
— %
(¢a¢ v a¢*)

It follows that these vector fields satisfy the Lie algebra

('L %) = 4(&%* — 8", 1G] = m&'A,
[p'D1=4p, [F.F1=4G' [HG1=p'
[A,D]=H, [HF=D,

[2 w],z ] = %(5,'/(2 (l] __ il T lik]

R R (2.23)
_6ikL [all +5”L [j,l]),

_ G+ 545,

18",

2

[Z1,6%] =i

[G\D]=—

(DF=F,
and the others are zero.

The commutation relations of vector ﬁelds in (2. 15)
and (2.23) have same forms except for [p G 1= m&A.

Since A commutes all other vector fields, it plays the role of
the center term for the Lie algebra.
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Next we will obtain conserved quantities of the Schro-
dinger equation associated with the symmetry transforma-
tions (2.20) and (2.21). The Lagrangian of the Schrodinger
equation is given by

i pumad— e T 9 Y
L= 2 A oY — Y 2m ,; ax' ax'
(2.24)

Then using the Noether theorem it follows that the con-
served quantities are given by

Q=J‘J°(x,t)dV, H=ng dv, p"=jT{, dv,

L =f (TS — xITO ¥,

Gi= f (mxJ° 4 tTdV, (2.25)
D= j (z'rg +-;—x‘T?) av,
F= f [z’T" + oo+ 2 i (x")zJ"} dv,

— [+ i 2 ~ 14

where
2 d %
Jo=¢s¢’ Tg =__ﬁ_ z é¢_i¢.,
2m &y 9x' ax' (2.26)

7%= “iﬁ(ﬂilp_wﬁ'ﬁ). .

! 2\ ax! ox'

ill. THE SYMMETRY ALGEBRA OF THE DAVEY~
STEWARTSON EQUATION

The Davey-Stewartson (DS) equation is the general-
ized Schridinger equation in the (2 <4 1)-dimensional
space-time which has a nonlinear self-interaction and cou-
ples with a scalar field ¢.

In this section we will discuss symmetry transforma-
tions of the DS equation, which is defined by the Lagrangian

N 74
L =f§- (W* 8, — 3,0*9) —5% (0, 9* 3,9 +3,0* 3,¥)

- 0.80.6 3,6 0,8) — iUl — w1917 3,9,
3.H

where « and u are coupling constants. From (3.1) it follows
that ¢ and ¢ satisfy the following differential equation:

i#dp= — (#/2m)(3% + 3V +« |P|*Y + pv 3, ¢,
@2 3¢ = —pd, Y (3.2)

It can be shown that the DS equation is covariant under
(2.20) (without rotations) and (2.21), that is,

x'=x+a,(1) +4()x,
Y =y+a, () + @)y,
' =1t+é&(1),

and

(3.3)
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1 i im
"ty =1——+—A +—
¥(x',t’) [ 26+ﬁ +ﬁ

)4 {dxx -} ayy -+ 'i‘ (X2 +y2)}]¢(xay9t)’

(3.4)
provided that ¢(x,p,t) transforms as
¢ (xy,t') ={1~10)}(xp.0). (3.5)
In (3.3)-(3.5), a, (), a, (), and £(¢) are given by
a.(t)=a,+ayt, a,(t) =a,+a,t, (3.6)

e(1) = &5+ &, + Je,t %

As explicitly expressed by (3.6) we have, so far, consid-
ered symmetry transformations with infinitesimal quantities
a,, a,, and ¢ which are linear or quadratic functions of z.
Now we will consider generalized symmetry transforma-
tions which are defined by (3.3) and (3.4) with arbitrary
infinitesimal functions of time a, (#), a, (¢}, £(¢), and A(2).
Under the generalized transformations we will assume that
& transforms as

P (X' Y,t") = (1 —16)d(x.p,t) + Ad(x,p,1). 3.7)

Here let us consider the conditions on A¢ under which the
DS equation transforms covariantly. Then it follows that A¢
has to satisfy

3,(Ap) = — (1/ {4 + m(@.x +&,p)
+ (m/4)Ex* + yH},
A2(Ag) = — (m/ p)a, — (m/2u)éy.
From (3.8) we find that

(3.8)

¢’(x,9yl’t) == (1 - ";— é)¢(x9y’t)
2 m . 2 2 -
— =y ——{2xyi, + (x> + )i, }
% 2u
LIPY N )
4u e(xy+ 3 y

+Zam +Lw, (3.9)
M M

where a () and B(¢) are arbitrary infinitesimal functions of
t. Thus we have shown that the DS equation is covariant
under the generalized transformations (3.3), (3.4), and
(3.9). We can easily check that these transformations are
equivalent to those found by Champagne and Winternitz.’

Vector fields that generate the symmetry transforma-
tions are given by

5 a i . d E,
X = —— — — —_ af®
(@,) =a, ax+ﬁmxa‘(¢a¢ 4 a;t;*)
x (9¢’

5 a i, d a
P =, 345 (455 557)

e S

2% (x> +y"a, %
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D il < il
() = e(x +y—|+e¢ ,

2 ('/’E/?J”p* A+ Fa’)

(3.10)

e

m 1 ad
—4,u (y+3y)a¢

A 9
Ay =Ly 9y _Ly 9
(==L (¢¢ ww) %
J B(t) 0
Pa)=a() 2L, 6(p =012
p o g 99

It is easy to see that these vector fields satisfy the following
commutation relations

[X'(af‘”),:Y\'(aiz’)] — mK(a,“”d,‘f) —ag?),
[X(a,),¥(a,)] = — mD(a,d,
[/I\’(a}‘,”),/l\f(af’)] = mx(a;”iz;z’
[X(a,),D(e)] = X(a, i — £a,),
[P(a,),D(e)] = Y(a, — ca,),
[D(e),D(,)] = D(£,&, — £,£,),
[5(a,),A(1)] = — B(4a,),
[D(e),A(D)] = Aedy,
[D(e),B(a)] = B(as),
[D(e),6(8)]1 = 18( Be),

—da.a,),

— 4D (2)
a,’a;”),

(3.11)

and the other commutation relations are zero.

Since the above-mentioned symmetry transformations
have arbitrary functions of ¢, they constitute an infinite-di-
mensional algebra. In order to see this it is convenient to
expand a, (1), a,(1), (¢), A(¢), a(t), and B(1) into the
Laurent series of z. For example, if we expand D(¢) as

© (n)
D(e) = 2 t'-"D, (3.12)
then from (3.11) it follows that
(n) (m) (n4m)
[ =(n—m) D (3.13)

Thus we find that the DS equation has as its symmetry alge-
bra the Virasoro algebra, which has played the important
role in the quantum field theory of the (1 + 1)-dimensional
conformally invariant system.

We turn next to the problem of finding conserved quan-
tities associated with the infinite-dimensional transforma-
tions. These quantities are found to be given by

o) = f AT (xep,t)dx dy,
P.(a,) = J {a, ()T + ma, (£)xJ }dx dy,

P,(a,) =f{ay(t)Tg + ma, (DpJYdxdy,  (3.14)
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D(¢) =f[£T8 +—%—é(xT§’¢ +yT9)

+ % E(x* 4y °]dx dy,
where J° = ¢*¢, and
= (#2/2m) (3, ¥* d,¥ + 3, ¥* 3,0
+1(3,¢ 9.6 —-3,63,¢)
+ e |9+ 912 9,4,
TS = (—i#i/2) (0, 9*¢ — ¢* 3,.9),
TS = — (i#/2) (3, ¢*¢ — ¥* 3,¥).

From (3.14) we see that the DS equation has an infinite
number of conserved quantities.

Here we have noticed that all of the infinite number of
conserved quantities can be expressed in terms of the num-
ber density J° and the energy-momentum density
T; (i,j = 0,x,y). On the other hand, as is well known, com-
pletely integrable models in the (1 + 1)-dimensional space-
time have another kind of infinite number of conserved
quantities that play the role of the action variables and have
various functional forms of field variables. In the previous
paper we have shown that the Thirring model is completely
integrable and has the conformal invariance, and then that
the model has the above-mentioned two kinds of conserved
quantities.”

In the DS equation, which has been shown to be solved
by the inverse scattering method, it is an interesting problem
to find explicit forms of the conserved quantities corre-
sponding to the action variables.

(3.15)

IV. GAUGE SYMMETRIES OF THE DS EQUATION

By integrating the differential equation of ¢ given by
(3.2), we find that ¢ can be expressed as

¢(x,}’,t) = ¢0(x,y’t) _ﬂ J dxl dy, G(X,}’;x’y’)a; |¢,I2’

(4.1)
where G(x,y,x',y') is the Green’s function that satisfies
(@2 —3H)Gxyx'y) =6(x—x)6(y—y), (42)

and ¢ (x,p,?) is an arbitrary solution of the differential equa-
tion

(9% = 9o xp5t) = 0. (4.3)
Next let us consider A¢ defined by
Ap= — iy — 2 {2xyia, + (x* + y*)i, }
7 2u
- (xzy + iy’) +an 2480 e
4 3 7"

which represents the variation of ¢ generated by the general-
ized symmetry transformation. It can be easily shown that
Ag¢, with arbitrary functions 4, a,, a,, ¢, a, and S of ¢, satis-
fies

(92— 32)A¢ =0. (4.5)
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From (4.3) and (4.5) we see that ¢y(x,p,t) transforms
under the generalized transformations as

$o (x'y'st") = (1 — 4€)do(x,,1) + Ag. (4.6)

In other words, the freedom of the generalized symmetry
transformations (3.3) and (3.4) comes from the arbitrari-
ness of ¢,. From this point of view we can say that the gener-
alized symmetry transformation of the DS equation is a
gauge transformation with time-dependent gauge functions,
and that ¢, plays the role of gauge field.

In order to represent generators of the gauge transfor-
mations in terms of field variables we will introduce the ca-
nonical conjugate momentum field 7 (x,y,t) of ¢,. This field
m(x,p,t) satisfies a first-kind constraint 7(x,y,t) = 0, since
the Lagrangian (3.1) does not have a ¢ term. Then we find
that generators of the gauge transformations are given by

Ad) = — J {,110 + iy#}dx dy,
u
:\\’(ax) = - J [axTS + ma, xJ°
m_ .
+ —xya, 7+ ax3x¢on']dx dy,
7
?(ay) = ——J. [ayTg + ma,yJ°
m 2 2 .
- Z(x +ya, T+ ay6y¢01r]dx dy,

Pee) = —f {srg +%é(xT2 +yT0) 4.7)
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+ B e+ I +-;—é¢o1r

- 'i:"(xzy + Ly’)w + g
4u 3

+ 230,40 + 93, do)|dx
$(a) = —1— J a(t)xmdx dy,
u

&(p==— JB(t)ﬂ' dx dy.
7
Since the DS equation has the gauge symmetry, we have
to fix the gauge freedom in order to obtain solutions of the
classical DS equation, or in order to discuss the quantum
theory of the system. As the simplest choice of gauge we can
take the gauge fixing defined by

Po(x.3,t) = 0. (4.8)

In this gauge the DS equation can be shown to be reduced to
the system that has the nonlocal-nonlinear interaction of ¢
and ¢*.
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In this work the scattering theory associated with the differential equation

i(3Y/It) = (— A + e~ “Mig(£)x; + g(x))¢ is considered, where x = (x,,x')eR X R?, £>0,
®>0, acR, g(1), teR is continuous, periodic with mean value zero over a period, and g(x)
approaches to zero sufficiently fast as |x| — . In the case £ > 0, it is shown that the usual
theory is adequate; however, a limit does not exist when £10. A modified theory is developed
where the limit does exist as £40. Furthermore, the concepts of bound states and scattering

states for £3>0 are discussed.

I. INTRODUCTION

In this paper we will discuss the scattering theory asso-
ciated with the Cauchy problem,

i3 =(—A+e W g(x, + q(x)),
¥(x,5) = ¢, (x)eL *(R?),
where x = (x,,x" JERXR?, ¢, seR, £>0, g(1), g(x) are both

real valued, g(#) is continuous and bounded, and g(x) has
the form

g(x) =q,(x) + g,(x),
g.€L 2 (R?), ¢.eL*(R%).

Here L = (R®) denotes the set of feL = (R®) that tend to
zero at infinity. Further assumptions on g and g will be intro-
duced as we proceed. Under these conditions, the operator
defined by

0A(t) = — A+ e Vg(t)x, + g(x), D(cA%(1))
=C(RY, (1.3)

is essentially self-adjoint (see Sec. 3 of Ref. 1 and references
therein). We denote its closure by 4° (¢) and write 4 § (¢) for
the case g = 0. Asis well known, (1.1) describes the interac-
tion of a quantum-mechanical particle in the semiclassical
approximation with a potential g(x) and the electric field
e “!"lg(2) (1,0,0). The case £ =0 was studied in Ref. 1
where existence and uniqueness of solutions for (1.1) was
proved assuming that ¢, is also continuous. As pointed out
by Kato? this assumption is not needed. It should be stressed,
however, that the hypotheses in Ref. 1 already cover the
Coulomb potential case, as far as existence and uniqueness
are concerned. From now on we will assume that g(z) is
periodic with period 7> 0 and

f g(Hydt=0.
(V]
In this case a satisfactory scattering theory was estab-
lished in Ref. 1 (see also Ref. 3) under the assumptions
g(x) = (1 + |x]>) 7AW, (x) + W,(x)), (1.5)
p>1, WeL=(R*, WeL*(R%),

(L.1)

(1.2)

(1.4)
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W,

ax,
where the derivative in (1.6) is computed in the sense of
distributions. More precisely, if U,.(#,5) is the propagator
associated to (1.1) (with £ = 0) and O(s) = U, (s + 7,5)
is the Floquet operator of the system, then

L3(R%) = ,.(0(s5)) @ 7, (O(s)), (1.7

R, (A°%40;5)) = H,.(0()), (1.8)

where 77, (U) and #°,.(U) are, respectively, the pure
point and absolutely continuous subspaces associated with
the unitary operator U, and the wave operators are defined
by

eL *(R%), (1.6)

0, (4%4;9) = s-lim U, (69U 5(19). (1.9)

t— + o

It can also be shown' that #°,(®(s)) and 5, (©(s)) are
precisely the bound state and scattering state subspaces in
the time-dependent sense (see Sec. IV). In particular the
“free” dynamics in this formulation is determined by the
Hamiltonian 4 § (). Although this is a very pleasing theory
from the mathematical point of view, physically one would
expect to be able to compare the dynamics generated by A(¢)
with the one determined by H,= — A [the Laplacian in
L ?(R?)] since, after all, the mean value of 4 °(¢) over a peri-
od is simply H = H; + q and there is a very well established
scattering theory for the pair (H,H,). That this can in fact be
done by suitably modifying the wave operators is shown in
Sec. I'V. This was one of the main motivations for this work.

We were also interested in the so-called adiabatic
switching of the field which is often used in physics (see
Refs. 4-6 and the references therein). Roughly speaking,
this procedure consists in introducing a “regularizing fac-
tor” depending continuously on some parameter £>0 (in
our case e ~ °I*!), developing the theory in this situation and
taking limits as £10in the hope of being able to handle the (in
principle) more difficult case £ = 0. In connection with this,
one should note that Dollard” has studied adiabatic switch-
ing in the usual theory of scattering. More precisely, he in-
troduces the Hamiltonian H(t) = H, + e ~“"'lq and shows
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that if g(x) is a short range potential, the usual wave opera-
tors with £> 0 exist and are unitary and, in the limit, they
coincide with the wave operators for the pair (H,H,). On the
other hand, if ¢ is the Coulomb potential the same result
holds in the case £ > 0, but the limit does not exist. Dollard
also shows how to modify the theory in order to obtain the
right wave operators as £10. Note that in both situations
there are no bound states if £ > 0. In the electric field case the
situation is different. In Sec. III we show that if £> 0 and
H = H, + q has a bound state then there are solutions of
(1.1) that behave as bound states as 7 —» + 0. We also prove
that the usual wave operators exist. In the following section
we show that these operators do not have a limit as £10. The
definitions are then modified and a satisfactory scattering
theory is obtained in the limit, as mentioned above. Section
II contains some notation and various technical results that
will be used in the remainder of this work.

Il. PRELIMINARIES

We begin by introducing several auxiliary functions
which will be needed in the next three sections. Assume that
g: R—Ris continuous periodic with period 7> 0 and satisfies
(1.4). In this case it is easy to see that we can choose 2 and G
such that for all z€R,

h'(r) =g(1), G'(1) =h(1),

h(t+7)=h(t), G'(t+7)=G(1), 2.1
f h(t)dt = f G(t)dt=0.
(1] (4]
Moreover, we will also need k(¢) such that
k'(t) = h(1)% (2.2)

Next, if £>0, we define functions g°, 4°, G°, and k° as fol-
lows. If e =0 let g°% A ° G° k° be the functions just intro-
duced. If £> 0, choose

g° (1) = exp( — |t )g(), (2.3)
- f i g(s)ds, >0,

ey =4 (2.4)
f g(s)ds, t<O,
- - he(s)ds, >0,

Gy =4 (2.5)
f he(s)ds, t<0,
— fw (he(s))ds, >0,

k&(t) = ' (2.6)

f (he(s))Pds, t<O.

Now assume that g(x) satisfies (1.2) and let ¢(x,r) be
the solution of (1.1) with £>0 fixed (which exists globally
and is unique; see Theorem 2.1 below), and introduce

@(x,t) = exp(ih *(£)x )W (x,t), 2.7)

x(x,2) = exp(ik <(1))@ (x; — 2G () ,x"). 2.8)
Then an easy computation shows that ¢ and y are solutions
of the equations
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idp=[((1/D3, —h*(Of —A*lp +g9p,  (2.9)

idy=(—A+gx, —2G°(t),xVy, (2.10)
where A' denotes the Laplacian with respect to the x* vari-
able.

Let 04 °(2), oB*(t), and oH °(¢), be the Hamiltonians
that occur on the right-hand sides of (1.1), (2.9), and (2.10)
with domain C § (R?). These operators are essentially self-
adjoint and we will denote their self-adjoint realizations in
L?(R,) by A° (), B° (t),and H? (¢) (see Ref. 1 and the refer-
ences therein). In case ¢ =0 we will write 45 (2), B (1),
and H,. Applying Kato’s theory of existence and uniqueness
for linear “hyperbolic” evolution equations,® it was shown in
Ref. 1 that the following theorem holds. A

Theorem 2.1: Let X(¢) denote any one of the three oper-
ators A° (1), B® (¢), H*? (¢). Then there exists a unique evolu-
tion operator (propagator) Uy (%,5), (,5)eR?, solving

. do

1—;7 =K(2)8(t), 0O(s)=06,eY, (2.11)
where
Y= {fL*(R®)|Af(1 + x})V2feL 2(R*)} (2.12)

inthe case of (1.1) and ¥ = D(H,) = H?*(R?) for the other
two equations. Moreover

U(ts)(NCY
in all three cases and the propagators are related by
U,(t5)=T()"'U,.(4,5)T*(s)
=T @)~V U, () V)T(s), (2.14)
with T° (), V ° (1), teR, given by

(2.13)

(T f)(x) = explih () x,) f(x),
(VEOf)(x) = explik () f(x, — 2G*(2),%"),

(2.15)
(2.16)

for all feL *(R?).

Finally in the remainder of this paper we will need the
following limiting properties of the auxiliary functions intro-
duced at the beginning of this section.

Lemma 2.2: Let g, h, G, k, g°, h°, G°, k° be as above.
Then, (i) for each fixed £ > 0 we have

lim A°(¢$) = lim G°(r) = lim k*°(t) =0; (2.17)
1— + o 1~ + o — 4+ oo
(ii) for each fixed teR, we have
lirglh‘(t) =h(2), limG(t) =G(2), (2.18)
£l £10
lim (k€(2) — k*(s)) = k(1) — k(s), (2.19)
€10
. - if >0
lim k(¢ =[ ®r 1 g ,
M D=1, i 1<o (2:20)

Proof: We will concentrate on the case £>0. Similar ar-
guments hold for ¢ < 0. The limits in (2.17) and (2.18) fol-
low by combining (2.3) and (2.4) in order to obtain the
estimate

he()|<e e “lgll.., V>0, (2.21)
where ||-||., denotes the L* norm.
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Next, using A’ =g, G' = h, and integrating by parts
twice we obtain

he(t) = — JW exp( — es)h'(s)ds

=e “h(t) +¢ J.w exp( — e5)G ' (s)ds

t

=e “h(1) + ce~“G(2)
+ & J-m exp( — &5)G(s)ds

=e " “h(t) + e~ “G(1)

+ef°° e"G(—q-) dé.
€t £

Since G is a bounded function, the integral in the last mem-
ber of (2.22) can be estimated by ||G ||, exp( — &t) and the
first limit in (2.18) follows at once. In order to prove the
second, note that since G’ = h the fourth equality in (2.22)
implies

(2.22)

Gi(t) =e~“G(t) + € fw ds fm du exp( — eu)G(u)

=e~"G(1) + & J-w du(u — 1)exp( — eu)G(u),
(2.23)

and the result follows in the same way as the previous one.
The only difference is that to control the integral of
u exp( — £u) G(u), we must use another function H, period-
ic with mean value zero such that H' = G, and integrate by
parts in order to get the factor £* where we need it. Equation
(2.19) is an easy consequence of the dominated convergence
theorem. We now turn to (2.20), which is by far the hardest
part. From the third equality in (2.22) we get

he(t)? =e *h(1)* + 2ee ~“h(1) fwexp( — es)h(s)ds

+ z;‘z(foc exp( — es)h(s)ds)

qu exp( —eu)h(u)du). (2.24)

It is easy to see that after integration the last two terms of the
right-hand side of (2.24) tend to zero as £10. Thus it remains
to show that

f e~ (h(s)) ds— o, as £l0. 2.25)
t
To do this let @ = sup, #(s)? and write
— 2
X, ={selt,0)[h(s)* <ar2}, (2.26)

X, = {selt,0)|h(s)*>a/2},
so that X, NX, is empty and {#,0) = X, UX,. Then,

f e “(h(s))? ds>J e~ =(h(s))? ds>= f e =ds.
¢ X, 2 Jx,

(2.27)
But as £10 the integral in the right-hand side of (2.27) tends
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to the Lesbegue measure |X, | of X,, which is infinite since
(h(s))? is periodic, non-negative, and nontrivial. This com-
pletes the proof. Q.ED.

. SCATTERING THEORY WiTH >0

The purpose of this section is to relate the asymptotic
behavior of U,.(#,s) and exp(—i(t—s)H) as t— + oo,
with both £> 0 and seR kept fixed. In order to accomplish
this it is convenient to establish a series of preliminary re-
sults, the first one of which is the following theorem.

Theorem 3.1: Assume that g(x) satisfies

g(x) = (14 |x]?) ~Pq,(x) + ¢,(x), p>1},

g.€L = (R%), ¢.eL*(R%). (3.1)
Then the wave operators
Q°, (4°5,45;5) = s-lim UA,(t,s)"UA,(t,s) (3.2)
t— + o o

exist, where the right-hand side of (3.2) denotes, as usual,
the strong limit in L 2(R?).

Proof: We will consider only the limit as — oo . The exis-
tence of the other follows from similar arguments. Further-
more, since the main idea involved here, namely the Cook-
Kuroda method, is by now standard, we will just indicate the
estimates involved. Note that in order to prove (3.2) (with
t— 4+ o), it is enough to show that

[ eV, 800 dt <,

for some a > s (which is fixed ) and all geC ¢ (R?). To do this
we use (2.14)-(2.16) to write UAS(t,s) in terms of

exp( — i(t — s)H,) as follows:

(3.3)

U, (1) = exp[ —ilhe()x, + k(1))
Xexp( — i(t — 5)H,)S,

GE(1) —2G%(s)

X explih (s) (x,)). (3.4)
If geL (R?), (3.4) implies that
U EADIC =52l g, (3.5)

where C'> Ois a constant. Integrating this inequality over R,
we obtain the estimate needed to prove (2.3) in this case.
Next if g(x) = (1 + |x|[*)~7q,(x), ¢g.€L= (R?), it is
enough to consider } <p<3, since otherwise geL *(R*) and
there is nothing to prove in view of the previous remarks.
Using the fact that the first factor on the right-hand side of
(3.4) commutes with multiplications and choosing p, p, r
suchthatre (3/29,3),p ' +r '=2"1p '+ p ' =1, we
can apply the Riesz—-Thorin theorem® to conclude

lqU, ¢ (£5)81:<C ligsll .« [t — sI 77| ,» (3:6)

where C> 0 is again a constant. Since 3/7> 1, the result fol-
lows also in this case and the proof is complete. Q.E.D.

Note that the estimates in (3.5) and (3.6) are indepen-
dent of £, and therefore they also hold in the case £ =0 [in
particular the wave operators €2, (4 °,4 3;s) exist under the
assumptions made in Theorem 3.1; this result is stronger
than the corresponding existence theorem in Sec. 5 of Ref.
1]. This remark will be used in Sec. IV.
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Next we prove a technical lemma that will be useful in
the remainder of this section and has some interest of its
own.

Lemma 3.2: Assume that g(x) satisfies (1.5) and let
H = Ho + q. Then

s-lim VT ()e~ -9 =
3
e - o0

for all seR, where 1 denotes the identity operator in L >(R?).

Proof: Without loss of generality we will assume that
s = 0. It is well known that under assumption (1.5) the fol-
lowing decomposition holds'®!!:

L3R =, (H) e 5, (H), (3.8)

where %, (H) [resp. 7, (H)] denotes the pure point
(resp. absolutely continuous) subspace of L 2(R?) with re-
spect to H (for the definition of these objects see Refs. 11 or
12). In order to prove the results we will show that the limit
exists in the two subspaces on the right-hand side of (3.8).
We start with %7, (H). Let feZ (H) = & (H,) besuch that
Hf = Af for some AeR. Then

le““Te(tye = “5f — fllo: =T = fle»  (39)

and the right-hand side of (3.9) tends to zero as t— oo, since
by the dominated convergence theorem we have
s-fim T5(t) = 1.
Les A a0
Using a simple approximation argument we obtain the result
in %, (H). Next we turn to 7, (H). We will consider only
t— + . The other case can be treated similarly. Recall
from usual potential scattering that given fe%°, (H) there
exists a unique @, €L ?(R?) such that
lim|le~ f — e~ *Hog_ ||, = 0.
t— o0
For a proof of this statement we refer the reader to Ref. 10
and/or Ref. 11. Adding and subtracting the appropriate
quantities, using the triangle inequality and the unitarity of
" and T(t) for each teR, we obtain

”eitI-ITE(t)e—ier_f“L2 <2”e-— uHp e~itﬂn¢+||Lz
+ Tty — e~ g, | . (3.12)

In view of (3.11) it remains to show that the second term on
the right-hand side of (3.12) tends to zero as t— 0. Let 8
denote the Fourier transform of 6L 2(R*) (for details, see
Ref. 9). Given 8>0 choose HeCZ(R?) such that
|6 — @, liL: <. Then

T =6y — e~ “Hop |2
<T@ — Ne"™6]|.: +6)%, (3.13)

so that it suffices to prove that ||(T(z) — l)e ™ "0 |-
tends to zero as #— o . Applying Parseval’s identity® we ob-
tain

T (&) — Nje” " 0|7

= [ 1B - gt - Benr ae,

where E(&,1) = exp( — ité 2)0(£). Since A* (¢) is a bounded
function, it is easy to see that the integrand in the rhs of
(3.14) has compact support. But then the dominated con-
vergence theorem implies the result because according to

(3.7

3.10)

(3.11)

(3.14)
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(2.21)both h* (t) and tA® () tend tozeroasf— 0. QE.D.
As a consequence of Lemma 3.2 we obtain the following
important result which relates the asymptotic behaviors of
the propagators U oy (t,s) and exp( — i(t — 5) H,).
Corollary 3.3: Let U 45 (13) and Hybe asin Theorem 2.1
{with g = 0). Then

Q°, (4§,Hys) = s-lim UAé(t,s)*e_""_””“

t— 4+ o
=Vis)~'T(s) ™’
= exp| — ik °(s))exp( — ih*(5)x,)S,

G®(s)?

(3.15)
where §,, aeR, is given by
(S./)(x) =flx, + ax"), feL*(R?). (3.16)

In particular the operators () . (A§,Hy;s) are unitary.
Proof: Applying (2.14) with ¢ =0 and noting that
V © (t) commutes with exp( — i(t — 5) H,} we obtain

UAs(t,s)'exp( —i(t—s)H,)

— TE(S) —1 VE(S) —1 Ve(t)ei(r— s)H(,Ts(t)e — it — s)H(,,
(3.17)

and the result follows at once from Lemma 3.2 and part (i)
of Lemma 2.2 which implies that s-lim,_ , _ V() = 1.
QE.D.
Combining Theorem 3.1 and Corollary 3.3 it is easy to
prove the following Corollary.
Corollary 3.4: Let g be as in Theorem 3.1. Then the wave
operators

Q) (4°5Hps) = s-lim U,.(t,5)%e~ =9

tr + o

(3.18)

exist.
We are now in position to state and prove the main re-
sult of this section, namely, the following Theorem.
Theorem 3.5: Assume that g satisfies condition (1.5).
Let H= H, 4+ q and A° () be as in Theorem 2.1. Then the
limits

T, (4%5H;s) = s-lim U, (1,5)%e~ = 9H (3.19)

— + =
exist and are unitary. Moreover the following intertwining
relations holds:
U, (5T, (A5Hs) =T (A5 Hy)e="~9H  (3.20)

Proof: In view of the first equality in (2.14) we may
write ['(#) = Up(fys)*e’“‘“’”as

T(t) = Tf(s)—l(UBt(t’S)*e—i(t—s)u)

Xei(l—s)HTz(t)e-—i(r—s)H’ (3-21)
where B (f) is as in Theorem 2.1. Due to Lemma 3.2 [and
the uniform boundness of all the factors in (3.21) with re-
spect to 7], it is enough to show that the limits

I, (B%H;s) = s-lim Uy, (2,5)*e™ "'~ ¥ (3.22)
t— F oo
exist and are unitary, since, in this case,
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lim T'(t) =T, (45H;s) =T%(s)"'T, (B*,H;s),
t— + o
(3.23)

which are obviously unitary. In order to obtain (3.22), we
remark first that, as is well known (Sec. 3 of Ref. 1), we have

D(B*(1)) = D(H) = D(H,), (3.24)

for all zeR. Let & denote D(H,) provided with the graph
norm | |fIl| = /I + | HofI}: and let B
= B(%,L*(R?)) denote the set of all bounded operators
from ¥ into L 2(R?). Then it is easy to verify that

f |BE(t) — H || 5 di < w, (3.25)
R

V:r(B(-)):sup S 1B 1) — B ()]l m < 0,

j<n—1
o< (3.26)

where the supremun is taken over all finite real sequences
to<t <t <" " <t,. Under these conditions Theorem 6 of
Ref. 13 implies that the operators in (3.22) exist and have
the stated properties. The proof of the intertwining relations
is standard and will be omitted (see Chap. X of Ref. 12,
where the proof is presented in the case of time-independent
Hamiltonians; the same idea works in our case). Q.E.D.

A few remarks are now in order. Let pe#°, (H). Then if
[y =T, (4°,H;5)p, we have

lim [|U,.(8)f, —e” “2Hp| .. =0, 3.27
t— + oo
and it is easy to see that the wave functions

Y, () =U_ . (t5f, behave as bound states as f— + .
More precisely, the probability of finding the particle in
{Ix|>R} at time 7 can be estimated as follows:

P(t,{|X|>R};fi )= ”fj; ”—2 JR-‘ |X{|x|>R} (x)
X(UAs(t)s)fi )(x)|2 dx

<Wfs 1 2lxgssrre ™2l

+|U,(18)f, —e™ 2 Hp ||,
(3.28)

where y, is the characteristic function of the set S. Thus,
given 77> 0, there exist 7,>0 and R, > 0 such that if || > ¢,
and R > R, then P(#;{|x|>R};f . ) <. This means that the
particie is asymptotically (as t— 4 ) in a bound state.
Moreover, it can also easily be shown that if g7, (H),
then f, =T, (4°,H;s)p aresuchthat ¢, = U, .(2,5)f,
behave as scattering states as f— + 0.

In view of the remarks just made, Theorem 3.5 and Eq.
(3.8) imply two decompositions of L 2(R*) into (asympto-
tic) bound state and scattering subspaces, namely,

L*(R%) =T . (4°H;s)(#,. (H))
ol , (45H;s)(,(H)).
It should be remarked, however, that, as far as we know, it is
an open question whether or not the above decompositions
coincide.
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IV. THE ADIABATIC LIMIT

In this section we will be concerned with the asymptotic
behavior (in time) of the solution (1.1) as £10. The first
thing to notice is that it is hopeless to take the “limit of the
theory” established for £> 0. This is already apparent in
Corollary 3.3. Indeed, in view of (3.15) and the behavior of
G* (s), h* (s5), and k° (5), described in Lemma 2.2, it follows
that ), (4 §,Hy;s) does not have a limit as £0. This also
indicates what the problem is and points the way to the cor-
rect definitions. Let £50 and introduce

Ae(t,S) —_ el’k‘(s)Ts(t)—lVE(t)—l
=exp[ — ik () — k*(s))]

Xexp[ —ih e(t)xl]SZG,m. (4.1)

Define the modified wave operators for the pair (4° (-),H,)
by

W, (A%Hys) = s-lim U, . (1,5)*A°(t,5)e =" =9,
t— + co
4.2)

if the limits exist.

In what follows we will show that they indeed exist for
€>0 and that (4.2) is continuous in £ up to £ = 0. We begin
with the case ¢ =0, which is trivial. Applying (2.15) to
write UA5 (1,5) in terms of exp( — i(¢ — s) H,) and using the
definition of A* (¢,5), we obtain

UAa(t,S)*AE(t,s)e—i(t_s)Ho

=T ) " V) =T) 'S _,5err)» (4.3)

forall £>0. Note that this expression is independent of #! This
means that the modification just introduced cancels out the
oscillations responsible for nonexistence of the limit of
2, (A45,Hys) as €10, uniformly in ¢. It should also be noted
that A°(z,5)e =~ js 3 “modified free evolution” in the
sense that

lim |AS(t,s)e = "= 9 Hefix) |2 dx = 0,
t— + o Jg
for all bounded measurable SCR® and feL *(R?).
In order to proceed, we will assume from now on that ¢
satisfies (1.5) and (1.6). In this case, as shown in Sec. 5 of
Ref. 1, the wave operators

0, (4°%A43;5) = s-lim UAo(t,s)"‘UAg(t,s) (4.4)

t— 4+
exist and are complete in the sense of (1.7) and (1.8) for all
seR, where @(s) is the Floquet (or period) operator of the
system, namely,

O(s) =Uyo(s+7,5), seR. (4.5)

With these remarks in mind, we have the following theorem.
Theorem 4.2: Let g satisfy (1.5) and (1.6). Then

Q, (A°%A43;5) =slimQ, (454§;5). (4.6)
€10

Proof: We will consider the case of 2, (494 3;s). The

other limit can be handled similarly. Moreover, since all op-

erators involved are uniformly bounded with respect to £330,
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it is enough to prove that the limit exists in C & (R*). Thus if
@ is any such function, we have

19, (4%45:)9p — R (454599 || <[ (4°%43;5) @
- UAo(t,S)*UAg(t,S)¢”L2 + |U4e (65)*U 15 (1.5)@
= U (15)* U, (19)@ |2 + U, (6)*U, (65)@
—Q, (454589 ||L2s 4.7)

for all reR. According to the remark following the proof of
Theorem 3.1, the first and third terms in the right-hand side
of (4.7) can be estimated as follows:

|0, (454599 — U, (6)*U, ()@ ||

<f lgU, s (rs)@ |- dr

<C(llal, g, [ 1u—si=*"du

+llgallle e j PEPEL du), (4.8)

where £0, > 5, and C is a constant independent of €. Since
the last member of (4.8) tends to zero as t— w0, it remains to
show that the second term on the rhs of (4.7) tends to zero as
£10. In order to do this note that the differential equation
satisfied by the propagators in question implies

t
U, (t5)*¢ = UAo(t,s)*cp+iJ‘ U,(rs)*

X (e — 1).g(t)x1UAo(I,r)dr. (49)

Before proceeding it should be remarked that x,U,. (t,r)@
belongs to L >(R?) and depends continuously in ¢ because of
(2.13). Then

U, (28)*¢ — Uyo (1,5)*@ ||

< f le= — 1 ||x,U,o (65 |[dr (4.10)

and the rhs tends to zero as £10 by the dominated conver-
gence theorem. This completes the proof. Q.ED.
We now turn to the main result of this section, namely,
the following theorem.
Theorem 4.3: Let g satisfy (1.5) and (1.6). Then the
wave operators W, (A4°,H,;s) exist of all £30. If £ > 0, they

are given by
W, (A%Hes) =0, (A5A5)T() 7S _ oo,

(4.11)
while if £ = 0, we have

W, (A°%Hys) =lim W, (454 §;s)
€10

=0, (A%A%)T() 'S 5. (4.12)

In particular,
AW, (A°Hys)) = R, (A° A3;9)) = F,.(O(s)),
(4.13)

where @ (s) is the Floquet operator defined in (4.5).
Proof: Due to (4.3), we can write
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UA‘(t’s)‘AE(t,S)e_ it — s)H,

=U,.(t*U, (t5)T*(s)”'S (4.14)

—2G4(s)?
for all zeR and £>0. Taking the limit as - + oo, we obtain
(4.11) and the second equality in (4.12). Next recall that in
the proof of Theorem 4.2 we have shown that

s-lim UAE(t,s)*UAS(t,s) = UAu(t,s)“UAg(t,s)

€10
[see the second term on the rhs of (4.7) ]. Therefore

s-lim s-lim U, (t,s)*UAa t)Te(s)~'S

-+ o €10 =26%(s)

= s-lim U0 (£,5)*U, o (65)T(5) 7S _ 360,

-~ +
=Q, (A% A4 T()™'S 60 = W, (4°48:5),
(4.15)

since we already know that the last equality in (4.15) holds.
The statement about the Floquet operator and the ranges of
the wave operators follows from (4.6) and the proof is com-
plete. Q.E.D.

We will now make some final remarks on the results
presented above. First of all, it is natural to ask what is the
relation between the modified and usual theories when £ > 0.
The answer, which is not difficult to obtain, is given by the
relation

f‘i (4 °5H;s) = s-lim U, (2,5)*A°(t,5)e == =H

t— + o
=e *OT_ (45H;s), (4.16)

where I" , (4 °,H;s) is the operator defined in Theorem 3.5.
Thus we obtain two decompositions of L 2(R?) into scatter-
ing and (asymptotic) bound states which are exactly the
same as before except for a phase [which does not have a
limit as £10; see (2.20) ]. In particular, we do not know if the
decompositions coincide. In the limit, however, the results of
this section show that we can construct a satisfactory scat-
tering theory. In this case we may have bound states in the
usual time-dependent sense™'' and the set of scattering
states is exactly the same as those obtained in Ref. 1 using
U,. (1,5) as the free evolution.
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Being guided by the problem of bound states in potentials close to their Padé approximants, a
new Rayleigh-Schrodinger-type perturbation theory is developed. The unperturbed system is
understood here in a broader sense: its solutions are not needed, but merely the related
nondiagonal unperturbed propagator R. In particular, all the chain models Hyy = ESy ¥ (H,,
S, = band matrices) with arbitrary perturbations are then perturbatively solvable, with R
constructed in terms of auxiliary matrix continued fractions f,. Alternatively, a “generalized
unperturbed spectrum” f,, may be required as an input: The algebraically constructed
asymptotics of the £, ’s play this role in our Padé examples. Due to § #17, the “Sturmians” may
also be constructed. In the test evaluations of the binding energies and/or couplings, the
simultaneous upper and lower bounds of high precision are shown to be numerically

obtainable.

I. INTRODUCTION

Usually, the textbook' Rayleigh-Schrédinger (RS)
perturbation theory is applied to the Hamiltonian matrices
that are almost diagonal,

large, m=n,

Hi = | .
(m|H |n) small, ms#n. (I.D
Recently, a weaker assumption
large, |m —n|<t,
(m|H |n) = [small, |m—n|>t, >0, (1.2)

has been shown to be tractable in the same spirit.> Here, we
intend to describe a generalizaton of the latter modified RS
(MRS) perturbation theory to an even more flexible class of
Hamiltonians.

As an inspiration, let us recall the radial Schrédinger
one-body equation

2

|-+ 1D s v v = Bve, 1=0..
(1.3)

with the often-studied potential®

b2 + cr* ur
vin = gtort+e o _Br 0, d>0,
() 1+ dr + T+ ar c> >

(14)

all of the matrix elements of which are nonzero in the stan-
dard harmonic oscillator basis* [i.e., #>1in (1.2)]. Never-
theless, an elementary modification of Egs. (1.3) and (1.4),

[S( r)H (oscillator) + IurZ] ¢(r)

=ES(nNY(r), S(r)=1+drs>0, (1.5)
acquires the infinite tridiagonal-matrix form
m+1
z [(mI(SH(oscillator) +'ur2)ln)
n=m-1
— E{m|S|n)]{n|¢y) =0, m=0,1,.., (1.6)

in the same basis, with S 7 but, at the same time, with the
extremely simple form of matrix elements (Whitehead
etal’).
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Our present paper will be devoted to all the generalized
eigenvalue problems® of similar type:

(H—ES)|¢) =0, S+#I (1.7)
For the sake of definiteness, we shall assume that

where both T and S, are band matrices and 4 €1.
In the first, general part of our study (Sec. I1), we shall
introduce a rearrangement of Eq. (1.8),

H=H,+AH, H,=T+U, AH,=iW_TU,
(1.9)

where U = O(A) will be specified in a “‘self-consistent” way.
Then we shall describe the related generalized RS (GRS)
construction of expansions,

E=Ey+AE, +A’E, + -+,
1) = o) + A | +A%/t,) + -,

the complexity of which remains, roughly speaking, on the
MRS level.

In Sec. II1, an illustration of applicability of the overall
GRS scheme may be found: We consider arbitrary V(r) in
Eq. (1.3), and an arbitrary Padé approximant’ of this func-
tion is incorporated into the band-matrix component T of
the Hamiltonian. 4 (2¢ + 1)-diagonal equation of the type
(1.6) is obtained as a simple special case of Eq. (1.7).

In Sec. IV, a matrix continued fractional (MCF) con-
struction of the propagator R is described, with a particular
emphasis laid upon the MCF convergence for
V(r) = Vpaae (r). Nevertheless, only Sec. V makes our per-
turbative formalism complete: It resorts to the use of }C,’s
(the “capped” input MCF-like quantities) and simplifies
the whole GRS construction considerably. Its final form
may be characterized by the capped rearrangement of Eq.
(1.9),

(1.10)

Hy=T+U+0=T+U,
AH,=AW-U—®=H—H,,
U=0(), 8=T-T=0(),

(1.11)
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and makes the traditional RS unperturbed solutions redun-
dant. .

In the Padé-oscillator examples, the role of the f,
“capped input” is assigned to the so-called fixed point
asymptotic MCF estimates. These quantities define the
propagator R = R as well as the capped operators 7and © in
Eq. (1.11). In a way, they are analogs to the ordinary RS
unperturbed spectrum. An example of their self-consistent
variation is studied numerically and shown to be able to pro-
vide the upper and lower bonds to the energies.

il. THE GRS PERTURBATION THEORY

An insertion of the RS-type ansatz (1.9) and (1.10) in
the perturbed chain model (1.7) leads immediately to the
RS hierarchy of requirements arranged as the separate
O(A*¥) identities. The first one is a (2¢ + 1)-diagonal chain
model®

m t

_2 ({m|Hy|n) — Eo{m|So|n)){n|t) =0,

m=0,1,., (2.1)
while the rest of them reads
(Hy — EoSo) |¥0) + Hy|th _ )
= i (E.So+E, _1SD|¥e_m) k=12,..
e (2.2)
A k=0

In contrast to the standard RS theory that requires the
operator H, — E S, diagonal, the 1>1 Eq. (2.1) is not solv-
able in general. Fortunately, we may circumvent this diffi-
culty in full analogy with the S = 7 MRS case,? i.e., via an
introduction of an auxiliary separable field U,

Hy=T+ U, AH,=AW—-U, U=10)g{0]. (2.3)
With the sufficiently small coupling strength,
g = 0(4), (2.4)

this split of the Hamiltonian remains still compatible with
(1.10).

In the same MRS spirit, we may introduce also the pro-
jectors P =10)(0| and Q = 1 — P and define the auxiliary
unperturbed propagator as an inverse matrix,

R=Q(P—QD,Q)"'Q, Dy=T— E,S,. (2.5)

Our (assumed) knowledge of this operator enables us to
eliminate the “irrelevant” components of the wave functions

Q |¢ho) = RD,|0)(O0l¢h),  (Ol¢hy) 70 (2.6)

from (2.1). This reduces our unperturbed k =0 Schro-
dinger equation to mere scalar relation

g= ~— (0]Dp|0) — (0] D,RD,|0). (2.7

Now a key point of the construction is a reinterpretation of
this chain-model eigenvalue condition as a definition of
g = g(E,). Then Eq. (2.1) becomes an identity, the zeroth-
order quantities (0|¢,) and E, remain free parameters, and
only the condition of smallness (2.4) must be taken into
account as a restriction of variability of the latter parameter.
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B.k>1
We may pick up the most natural normalization
©Olgey =1, O|¢) =0, k=12,., (2.8)

and rewrite the P projection of Eq. (2.2) as a definition of
energies

E (0] So¢o) = (O1Do|¢hs) + 0| W |¢i_ 1)
- 5k,1 “ho — EO(OISlllpk-— 1 )

~ 3 E, (Sl

m=1

+ O)Si ¥k —m_1)) k=12,...
(2.9)

Here, the symbol §;; is a Kronecker delta ( ~ (0|#,_,)) and
g/A = hy = 0(1) [cf. Eq. (2.4)]. Similarly, the Q-projected
remainder of Eq. (2.2) defines the wave functions

W) =RW|_ ) — S E,RSolte

m=1

k
- Z Em—lell'pk—m)’ k=192)~--- (2~10)

m=1

C. The iterative interpretation of formulas

In principle, the coupled pair of the £ 1 equations (2.9)
and (2.10) defines the explicit RS-like multiple series repre-
sentation of corrections E, and |¢, } in (1.10). For example,
we may eliminate, say, |1, ) from (2.9) and get

Ep = @o| Wt _ 1) — hebiy
k-1

- 2 E,..A@olSo|¥x - m)

m=1

k-1
- z Em<¢0|Sl|¢k——m—l>)y k=1,.2,..,
m=0

k= 1/{@olSoltho)» (ol = (0] + (0| D,R,

(2.11)

etc.

In practice, we may recommend a direct numerical use
of Egs. (2.10) and (2.11) as recurrences. Thus our knowl-
edge of [#,) [(2.6) and (2.8) ] and (@, [(2.11)] enables us
to define the first nontrivial contribution

E, = k({@o| W |tho) — ho — Eo{@o|S1|%0)) (2.12)
to the energies as well as the subsequent wave function cor-
rection

[#) = R(W |¢ho) — E\Soltho) — EoSil#he)).  (2.13)
For k2, we may proceed further in an iterative manner and,
in a preparatory step, abbreviate

|7'1> = QSo|0), |7'2> = QS,!O),

(#| = (@olSe@,  (F4| = <‘PolS1Q, (2.14)

(75| = O|WQ, [F.) =Eol¢) + E\lth), k=2,
where a restriction to the @-projected subspace is marked by

a tilde: this denotation is reasonable due to our normaliza-
tion (2.8) (with |¢,) = |¢ >, k>1, etc.)
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In the forthcoming steps, our formulas (2.10) and
(2.11) may be understood as an algorithm:
(A1) define

k—1

7o) = ZIEMI'Zk—m>; (2.15)
(A2) compute
E, = k({Fslthi_ ) + (@l W (1)

— (K17 — (Rl7a); (2.16)
(A3) redefine
[7.) = %) +Ek|'7’o>; (2.17)
(A4) compute
%) = R(W |y ) = SofF)

—$i[7.) = Ex[F1) — Ex_y|P2); (2.18)
(AS) redefine
F):=7) + Bolth), ki=k+1; (2.19)

and return to (A1) if the higher-order corrections are re-
quired.

In fact, our present GRS prescription is just an exten-
sion of the MRS formalism,” where S = 7, i.e.,

[71) = |F2) = '7'a> =0, (%] =1{(Pol- (2.20)
Similarly, we may even return to the standard RS ¢ = 0 for-
malism with

(3| = (@ol =0, |¥o) =0, [F.)=IF,). (2.21)

lll. APPLICATION: THE PADE APPROXIMATION OF
POTENTIALS

A phenomenological use of the various central poten-
tials ¥(r) in Eq. (1.3) ranges from nuclear physics up to
molecular physics and quantum chemistry. The functions
V(r) may differ in their »— o0 asymptotics as well as in their
(possibly even weakly singular) behavior at r— 0. In general
we may assume that an ansatz

Vpads () = (a polynomial in z)/(polynomial in z),
3.1

z2= z(r) =r mteger/integer,

lim P Vpage (P) > — 4,
r—0

will represent a sufficiently broad class of the necessary ap-
proximants, making an arbitrary “realistic” input force ex-
pressible in the form

V(r) = Vpage (7) + AV (1),

where AV, (r) is arbitrarily small.”

In Eq. (1.3) with V= Vp,,, a change of variables
r— pteser/integer may be used for its conversion into the same
equation with the z(7) = 7* “canonical” form of the Padé
force with AV, (r) =0,

V(r) = G() + A(P*)/B(7),

3.2)

r—1 g
Ax) =3 a,x", G(x)= Y g.x", §>0,
m=0 m==1

Id
B(x)=m2=‘,0b,,.x”'>0, b,>0, p>0, ¢>1, (3.3)
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and with an inessential reinterpretation of the parameters:
the angular momentum /> — } becomes shifted and ceases
to be an integer, and the original energy becomes trans-
formed into one of the new couplings (say, g, ). Vice versa,
the new energy variable E will represent just one of the origi-
nal couplings. As an illustration, we may recall the screened
Coulomb (SC) force

Vsc(r) =a/r+B/(r+ 9% (3.4)

with the canonical representation (1.4).°

Among the merits of the Padé forces (3.3) we may men-
tion not only their flexibility and universality, but also their
elementary solvability for some particular couplings,® use-
ful for performing easily the numerical tests.!! Nevertheless,
their main merit lies in a possibility to use the harmonic
oscillator basis |n) and analogy with Eq. (1.6). Thus our
GRS approach to the AV, = 0 force (3.2) may be based on
an arbitrary product decomposition of the denominator in
(3.3),

B(x) = B, (x) Bg(x),
P

Bi(x)= 2 bg)x”" pi>0» i=L’R9 pL +pR =p’
m=e (3.5)

followed by a multiplicative redefinition of our AV,
= W = 0 equation of the type (1.5),

2
o - Ltz

+A(r2)]:p(r) =0,
@(r) = ¢(r)/Bx (),

and, finally, on an expansion of ¢(r) in the basis |n). As a
result, we obtain our W =10 chain-model generalization

(2.1) of Eq. (1.6),

+ G(P) —E]BR(F)

(3.6)

m+t

S (mlH |n)(nlp)

m4s
= Y E{(m|S|n){nlp), m=01,., 3.7)
where the operators
H=B,(X)[H" _ X4 G(X)]Br(X)
+A4(X) =T, (3.8

S=B, (X)Bg(X) =B(X) =S,

are band matrices since X = 7 is tridiagonal. Obviously, we
haves = pand ¢t = p + g in general. For ¢ = 1, we may even
put ¢ = p after a rescaling of the coordinate such that g, = 1.
Similarly, we may also incorporate A ¥V #0.

In the conclusion, we have to reemphasize that our GRS
series (1.10) need not represent the energy: For the z(7) #7°
forces (3.1), — E denotes, in fact, just a strength of the cou-
pling g, that creates a bound state at a prescribed energy

—8&m,» Mo>0. Hence we are forced to denote
Gy(r) =G(r) — g, ™ +8» E= —g,, and change the
corresponding matrices in Eq. (3.7),
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H =B, (X)[H 0 _ X 4 Go(X)]Bg(X)
+AX) =T,
S =B, (X)X™B,(X) = X™B(X) = S,

Of course, we have to redefine also the integer s =p + m,
and add the corrections AV, (r) #0 and AS,5#0 if needed.

(3.9)

IV. THE CONSTRUCTION OF PROPAGATORS A/ IN
TERMS OF THE MATRIX CONTINUED FRACTIONS

A. The formalism

In accord with Sec. I1, a knowledge of R (2.5) not only
leads to the zeroth-order solution of the unperturbed prob-
lem, but it also renders possible an explicit specification of all
the higher-order corrections. Thus a practical efficiency of
the GRS expansions will mainly be determined by the inver-
sion in (2.5).

Keeping this in mind, let us partition the unperturbed
Schrodinger operator into its (7 X¢)-dimensional subma-
trices,

a b
b
D,=T—ES,=|¢* & ™ , (4.1)
¢ a b
and also introduce the partitioned auxiliary matrices,
I b,f,
I b,f
Fy = R
v I byf,
I
fiex I
F, = s (4.2)
£ fer I
1/f,
F,=

1/fi

Then we may postulate an explicit factorization formula

Dy=T—ES,=Fy F,F;. (4.3)
This becomes an algebraic identity if and only if
l/fk=ak—bkfk+lck+l, k=0,1,.... (4.4)

Thus, whenever D, may be treated as an infinite-dimensional
limit of its truncated forms, the latter relations may be initia-
lized by f3r ., =0, M- o and define just a matrix form of
the analytic continued fractions.

A motivation of our matrix continued fractional
(MCF) factorization (4.3) of D, lies in the related simple
form of the inverse matrices (e.g.,

7 - bofl bofibi s —bofibi by S5
. I —bfi  —bfbfi
[ /20— ]

1 —byfy -
4.5)

etc.) and also in the easy projection of the triangular matri-
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ces (e.g., Fy Q= QF, @, etc.). Both these consequences of
our ansatz (4.2) lead quickly to the explicit MCF definition

fo

S

R=F;'Q QF ;! (4.6)

£

of our “input” unperturbed propagator R.

B. The MCF convergence

For the systems of the simple type (3.9), an important
merit lies in a possibility of their semi- or non-numerical
analysis. In particular, a study of convergence of the present
infinite MCF expansions

1
fk= 1

4.7)
a— by
r 4
becomes feasible'® due to a validity of the same leading-order
asymptotic behavior of the matrices H and S,

Cr 1

(M + m|Dy|M + n)
2t

=constM"+q(
t4+m-—n

)+ oMr*e=1), Msl.
(4.8)

This may quite easily be derived from the well known formu-
la??

2m+ 143, n=m,
(miPjn) {[(m+Dm+I+P]% n=m+1,
[m(m +1+ 112, n=m-—1,
(4.9)

and, up to the irrelevant constant term, leads to the leading-
order MCF estimate

Fuaen~FSTO~M P : :
1
) © )
a”—b o c
a(o) — SST+ STS, b(o) =T _gTg T, (4_10)
Soin =( ! ), mun=12,..,t,
n—m

which may be summed up in the closed form

SO ~M —2-9(SST)~ 1, (4.11)

In a higher-order analysis, we may recall the specialized
literature'* and create the more general asymptotics [ the so-
called fixed-point MCF expansions] of the type

Sur =00+ 0+ 0+ Sk (412)
Here the remainder term is a MCF-type quantity again: fora
sufficient number kg, of subtractions of the type (4.12), the
corresponding remainder recurrences may be linearized for
M> 1 and the rigorous proof of convergence becomes tri-
vial 13-13

In the present context, let us illustrate the higher-order
MCEF analysis on a particular g > 2 and ¥ > 0 extension of the
asymptotic estimate (4.8),
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const{M + m|Dy|M + n)

=MP+<'( 2t )
t+m-—n

2t—2 )
p+q—1 o(MPt+te—2 ,
+rM (t+m—n—l +O( )
y=b, /b, +8, /8, M>1 (4.13)

Then, in accord with the Appendix of Ref. 13, we may postu-
late

const M, 74

Sk = SST+ST|B)p.(B|S + small terms
(Bl = (1’ - 1!1’ - la'-"( - 1)I+ 1)’
M,>1, k=0,1,... (4.14)

Such an approximation dominates the second-order behav-
ior and reduces the (¢ X ¢)-dimensional MCF recurrences to
mere one-dimensional mapping g, —p . 1, K€M,

Prir =(px +¥YMg '+ OM s/ (1+1p,),

k=0,1,... (4.15)

An analysis of convergence of the latter reduced MCF
mapping is not difficult. In accord with Fig. 1, we may con-
clude that it has a pair of the real fixed points,

Pr=Pri1= +p(FP)_ + ['}//Mot+0(M_2)]l/2, k>1,
(4.16)

the positive one of which is a point of accumulation of the
sequence

Po—" " =P —Pryr1— s k&M, (4.17)

for an almost arbitrary initial choice p,. In particular, a con-
vergence from above and from below may be expected for
loo] >p'FF? and |po| < (P, respectively.

V. THE NON-NUMERICAL CONSTRUCTION OF R=FR

A. The second auxiliary rearrangement operator O and
the final form of the GRS formalism

For the sufficiently large number of terms in the fixed
point formula (4.12), we may define

}pk+l

el e T S —, (S

FIG. 1. The auxiliary (¢ X ¢)-dimensional continued fraction convergence
in the leading-order asymptotic one-dimensional approximation (4.15)
[P = (y/MD'?].
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Fu =FE™ 4L 4 SO, M>M, (5.1)

as a sufficiently reliable approximant to the uncapped MCF
quantities. Vice versa, the capped quantities fM have to cor-
respond to some unknown operator D via the factorization
(4.3).Now, an assumption b,, =b,,,¢,, ., =c,,, , maybe
combined with the necessary and sufficient condition (4.4)
into an explicit definition

&m =}'rzl+bm.}‘m+lcm+l) m>M0,
of the missing matrix elements of ﬁo.

For the sufficiently large M, or kg, [ = number of
terms in (5.1)], the difference between the capped and un-
capped operators will be small,

®=D,— D, =0(A), (5.3)
and may be treated as another component of the perturba-
tion. In more detail, we may replace Eq. (1.9) by Eq. (1.11),
ie., (a) start fro}r\n the FP formula (5.1) and define the
capped operator D, by means of Eq. (5.2); (b) define the
capped, solvable band matrix T'= T( f;, i =0,1,...),

T=T+D,— D, (5.4)

and preserve the overlap matrix .S unchanged; (c¢) use Eq.
(4.6) and reglac; R[the inversion (2.5)] by the capped op-
erator R =R( f;,i=0,1,...); (d) replace all D, by D, and
also substitute

AW=H-T=W—-06, 0=0),

(5.2)

(5.5)

forall the uncapped A W’s; and (e) use theAGRS fg\rmalisn}\ of
Sec. II with the capped quantities: 7T, R— R, Dy— D,
and W W.

B. The Padé oscillator iliustration

Let us put ¥V, (r) = 0in Eq. (3.2) and define the related
uncapped unperturbed operator R in terms of the MCF
quantities f,. Then, our perturbation AH, = — U #0is sep-
arable and reflects merely our “bad” choice of E;. Of course,
we are tempted to define now the “‘best” value of £, = E,,,,
by the requirement g(E,) =0, i.e., AH, =0, i.e,

det 1/f, =0 (5.6)

[cf. Eq. (2.7) ). This is a Brillouin-Wigner-type formula and
enables us to determine E,,,., numerically by the trial and
error technique (cf., e.g., Graffi and Grecchi,’® etc.).

In light of Sec. IV B, acceleration of the MCF conver-
gence in Eq. (5.6) may be achieved by the FP subtractions.
Alternatively, we may ignore the higher-order MCF correc-
tions and use Eq. (5.1) inan approximative evaluation of the
energies. In the present GRS context, we may combine both
these ideas: We may start from the uncapped W =0 and
matrix D, and redeﬁne the corrections (A W #0),

const{M, + m|/1W|M +n)
2t -2

- Mp+q-n(
YMy t+m

m,n>0,
via the explicit algebraic formula (5.1). No infinite MCF
expansions of the type (4.7) are needed anymore.
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C. Perturbative determination of the upper and lower
estimates of energies

An introduction of the auxiliary operator 0= O(A)
and of the secondary rearrangement (1.11) of the full Ham-
iltonian H has been motivated formally: It enables us to re-
construct the complete GRS input (namely, the operator
R= R approximant T and the split matrices Hy, = T+U
and AH, =4 W—U)inan entirely non-numerical manner.

Now, let use pay attention to the corresponding GRS
perturbation formulas at a given and fixed order of precision
O(A*). For the sake of simplicity, we shall analyze just the
first-order example of the preceding subsection and notice
that the leading-order components (5.7) of the perturbation
AW are positive semidefinite. Indeed, they may be interpret-
ed as certain matrix elements of the powers of 77 > 0.

The most important consequence of the above observa-
tion lies in an easy majorization and minorization of the
whole perturbation A W > 0 by the operators

AW SR = 1750, 2 5 1 4 O(1/My),

. 5.8
z(mm) <1 - 0( I/MO) ( )

The corresponding replacement of the parameter ¥ >0 in
Eq. (5.7) by ™ = z(m&)y 5, 0 and p'™™ = ™™y 5 0, re-
spectively, leads also to an explicit change of p, in (4.14),

%)

( mm ) min
&(p,

pzm) (z o) ¥/Myt — |const|/M3)'/?,

PRy,
(5.9)

p<m...) (z(m-n ¥/Mt + |const|/M3)"/2.

Here, the length of the uncertainty interval need not be negli-
gible since the parameters themselves are small.

For the purely numerical purposes, let us now treat p, as
a free parameter, and eliminate also the GRS convergence
questions by using the Brillouin-Wigner-type formula
(5.6). We may expect that the resulting energy roots
E = E(M,,p,) will also follow the majorization and minori-
zation change of the Hamiltonians,

E(Myp™®) <E, ... <E(Myp™D). (5.10)

As a consequence, the best results will lie somewhere within
the interval of parameters

polpi™™, pim).

This is our first important observation.'”

In the computations, a precise localization of the opti-
mal interval (5.11) may prove difficult both algebraically
(the higher-order FP corrections are complicated'*) and
computationally (whenever we get p™ ~p™¥ for some
small M;). Nevertheless, there is an easy way out of this
difficulty: The dependence of energies E(M,,p,) weakens
with the increasing M,, so that the two curves E(M {*,p,)
and E(M P ,p,) must intersect somewhere in the interval
(5.11). The point of intersection specifies the best values of
po and E, geometrically.

Numerically, the geometric “sandwiching” of energies
of this type has been tested on the various 72 examples with
M§® = 400 and M P’ = 500. Schematically, the results are
summarized in Fig. 2 where a common pattern of the M, and

(5.11)
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FIG. 2. A geometric, numerical sandwiching of the energies.

P, dependence of E(M,,p,) is depicted in arbitrary units.
The scheme worked even beyond its natural limits given by
its present derivation: A large initial choice of po— +
simulates the MCF initialization f,, = 0 and exhibits also
the expected variational behavior typical for the standard
increasing truncation of Hamiltonians. For the smaller M,’s,
a use of the third curve E(M {V,p,) may sometimes be rec-
ommended for an estimate of the error bars.'®

Vi. SUMMARY

In the paper, a generalized Rayleigh—Schrodinger per-
turbation theory has been proposed and described as a
means of solving the Schrodinger bound-state problem when
formulated as a matrix equation in some nonorthogonal ba-
sis,

HyY=ESyY, S#IL (6.1)

As an illustrative example, we have chosen the determina-
tion of bound states in a general central potential approxi-
mated by a ratio of two polynomials of an arbitrary degree.
The specific features of such a Padé oscillator example
proved extremely useful.

(1) In the first stage, a band-matrix (2¢ + 1)-diagonal
structure of the related Schridinger operator enabled us to
satisfy the main and strongest GRS requirement (namely,
an a priori knowledge of the unperturbed propagator R) in
the manner proposed recently for the S = I case [namely,
via a construction of R in terms of certain auxiliary (7 X 1)-
dimensional continued fractions].

(2) An asymptotic smoothness of the matrix elements
of D, proved essential for a subsequent elimination of the
infinite (i.e., numerical) MCF expansions. In the GRS for-
mulas, we have replaced them by certain algebraic (so-called
fixed point, capped) finite expressions that generalized di-
rectly the standard RS input unperturbed spectrum.

(3) The S #1 formulation of the Padé-oscillator exam-
ples with the FP elimination of the MCF expansions has
been shown to contain the positive semidefinite perturba-
tions AW, The subsequent easy majorization and minoriza-
tion (sandwiching) of Hamiltonians also leads quickly to
the GRS formulas that majorize and minorize the energies of
a O(A *) level of precision in principle.

(4) A modified interpretation of the operator S renders
possible a GRS generation of the perturbation formulas for
the couplings
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G=Go+lGl+i2G2+"'- (6-2)

Such a completion of the expansions of energies may also be
complemented by the perturbative construction of the so-
called “Sturmians” * if needed.

In a broader methodical sence, all our Padé-oscillator
results exemplify the main merits of our GRS expansions:
(1) afeasibility of the non-numerical S I expansions, (2) a
generalization and weakening of the standard RS “‘solvabil-
ity” requirement, (3) a possible sandwiching of the exact
values in a variational and ‘‘antivariational”” manner, and
(4) an extension (6.2) of the standard ‘“‘changing-energy”
picture of vicinity of the fixed ‘““‘unperturbed” system to a full
analysis [cf. Eq. (3.9) with my; =0,1,...,q] of mutual rela-
tions between the variable couplings and the energies.
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the fourth-order approximate solutions of Einstein-Maxwell equations

Zhou Qi-huang

Department of Physics, Hunan Normal University, Changsha, Hunan, People’s Republic of China

(Received 1 June 1988; accepted for publication 10 August 1988)

Starting with the general expression of a static state axisymmetric metric and using the
principle of equivalence and the Maccullagh formula, the Einstein-Maxwell equations of a
charged axisymmetric celestial body are obtained. Next, using the method of undetermined
coefficients these equations are solved up to fourth-order approximate. These sets of solutions
are generally appropriate for all kinds of charged axisymmetric celestial bodies.

I. THE GENERAL EXPRESSION OF THE METRIC OF A
STATIC STATE AXISYMMETRIC GRAVITATIONAL
FIELD AS WELL AS ITS CONNECTION AND RICCI
TENSORS

The general expression for the metric of a static axisym-
metric gravitationa] field is’

drr = —é“(dx®)* + &~ ¥
X [(dx")? 4 (dx?)?] + pPe~dg?, (1)

where u, «, and p are the functions of x' and x*. Therefore the
nonzero components of affine connection are

du du
Fgl_FIO_E—T’ ng=rgo=5;2'»
w—2c OU dk  du
Foo = i Th=ga~ 5
oc Ju du dx
FZI—FIZ_aZ az’ F;2='a—x_1_5x—19
, Ou do w2 OU
Th=e*(p gn—pgh)s Th=e" 20 @
du Ok dx  Jdu
Ph=ge o T=Th=gi—go
dk du 2 du dp
Mh= 55 Th=c(F5a-r50):
1 90 du
3, =r,=p'2£_2,
31 13=pP ' ox!
d, du
r3 =r3 = —ll__.
2 23 =p 2 o
The nonzero components of the Ricci tensor are
3%u 3%u
R — 4u — 2x
©= T @) T ae)?
(22, 2 )
ax' dx! ' Ix? ax*/)’
R.— % 3%
U T (ax?)?
3w O (ﬁ)z_}_ _1 3%
xH2  (9x*)? ax! (ax")?
_ —1(_3_"_3_/’ i“_é’&)
ox' 9x'  Ix* Ix?
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(225 %)

axl dxt  9x® ax?
Ro.—? du du (ax dp | Ok 6p)
=« "5 A3 A1
axt o ax! 3x?  ax? Ix!
1 9%
1
Ip 3
te Ix'9x? )
R — 3% 3% _ %u _ 3%u
2T @) () () (92
8u) _; 9%
2
+ (ax te (Ix?)?
(e o0 o)
ax' ax' | 9x? ax?
(3o a)
te (ax‘ ax'  Ix* ax?)’
a%u %u du 9J
Rii= — 2 —2K[ ( p
? e (dx")?  (dx?)? Ix" ax!
wa p oy
x? axz  (Ox")?  (9x3)?

Il. EXPRESSIONS FOR THE ENERGY-MOMENTUM
TENSOR 7,,, OF A STATIC ELECTRIC FIELD

According to
T/.w = FyonU - %g,qumFm-’ (4)

where F,,, is the antisymmetry tensor of the electromagnetic
field, ie., F,, =dA,/dx" — dA,/dx", and A, is the four-
dimensional potential of the electromagnetic field.

The axisymmetrical component of the axisymmetrical
four-dimensional potential should be zero, ie., 4;,=4,
= 0. Because the electromagnetic potential has gauge free-
dom, ie., 4] =A, + IA/Ox*, where A = A(x'.x?), we
can choose A (x!,x?), such that

A} =A1+3—A—0 A} =A2+%=
Then the nonzero component of the electromagnetic poten-
tial only has 4,, and the nonzero components of the electro-
magnetic field tensor are
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A 94,

Foy= —Fyp= —‘bx—?» Foz=—on=—ax2,
F01= —F'°=e_2“—‘zA—°, F02= _F20= —ZKaL;)'
ox! ox

(3)

Combining the above equations, we obtain the nonzero
components of the electromagnetic field energy-momentum
tensor 7,

>1

1 94,
T22=7e [(

34, I,
ax' Ix?
T=g”V(F,uaFva'—%gvao‘rFm) =0‘

T12= __e—2u

HI. EINSTEIN-MAXWELL FIELD EQUATIONS

Substituting the above expressions for R,,,, T,,,, and T
into the Finstein gravitational equation, we have

3%u d%u _,(ﬂa_p du Bp)
(dx")?  (9x*)? ax' dx' | 9x? dx?
_ Ko -2 aA0)2 (aAo)] 7
pe () + (5201 ¢
3% %  d*u_ % (__3&)2
(Ix1H2 ()2  (Ox1)? (9xP)? Ix!
ot %p _ —1(_513_/9 i"_a_/’)
(Ix1)? ' Ix'  Ax* 9x?
(33 o a)
ax! Ix'  Ix® Ix?
= %o ,—2u aAo)z_(aAo)Z] 8
2 ¢ [( ax! )y (8)
23u Ou  _ (ax dp , Ok ap)
ax! ax? ax' ax2 | 9% Ix!
_, 0% 2y 04, 04
te lax‘;:cz:Koe ’ c?x(‘) axg ®
% 3% 3w d'u (ﬁ)’
(0xH)?  (x*)*  (Ix")?  (9x?)? x>
b T8y (30 0 )
(9x%)? ox! dx' ' 9x? ax?
v (25989 3
ax' dx' a9x* 9x?
2 2
= -Se|(5) - (5] (10
Py Su (%
(dx")?  (9xH)? Ix! Ix!
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oudp 9 _ 5P)
ax? ax*  (IxM)®  (9x*)?

(4 (3]
2e [(6x‘ + ax/ 1

In order to simplify the gravitational equations (7)-
(11), we introduce the classical coordinates

(11)

xX'=p=r, x*=z

Obviously, the classical coordinates are reasonable because
they satisfy
a’p d’p
(dx')? ~ (9x*)?
which is obtained by (7) — (11). Therefore (7)—(11) can
be simplified into

=0, (12)

du 1 du K (8A0)2 (aAo)z] e
ar2+822+r8r_2 or + dz ¢
(13)
Lo () (auy
r or 0z ar
= =25 - (5] s

ii_ (au au) _Ko(aAo)(aAo)e_z,,’ (15)
r oz ar Oz ax az
3/( % ( ) (6u)

a2t a2 az* + + Jz

(o (2]~
2 ar Jz
where «, = 87G.

Substituting the expressions for gin (1) and F #into the
Maxwell equation

1 9 —gF*™) -0
1[ —g 0x o ’

we have
A( — re =2 dA/r)

(16)

+ d( — re= 3dA,/9z)

=0. 17
ar 9z an
It can be seen that when
aAO =e2u_q_l_/_’ aAO =e2uﬂ, (18)
ar ar az a9z
the Maxwell equation becomes
2 2
IV, 0V 1 ,p—o

— + —
ar? 32 r Or

This is just the Laplace equation of a static electric potential
without a gravitational field. Therefore ¥ should be the stat-
ic electric potential in Minkowski space, and u—0, d4,/
dr—3avV /dr,34,/3z— 3V /3z, whenr— o ; thus (18) satisfies
the principle of equivalence and (17) has the solution of
(18).

From the Maccullagh formula, the approximate expres-
sion of a static electric potential of an axisymmetric charged

body is?
('1 37
r24 22

__ ko KU, — 1))
(r2+22)1/2 2(’.2+22)3/2

), (19)
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where Qs the total electric charge of a celestial body, k is the
rate constant of the electric field, and I; and /; are the mo-
ments of inertia about the symmetry axis (as the third cen-
tral principal axis) and the first or second central principal
axis divided by the total mass of the charged body, respec-
tively. Also, we have

ﬂ= — kQr _3kQ(13—'11)"
ar (r2+22)3/2 (r2+22)5/2

15kQ(I, — I,) 17

2(r2+22)7/2 (20)
av kQz _ 9%QU; — 1))z
Jz - (r2+22)3/2 (r2+zz)5/2

15kQ(1; — 11)23

2(r2+22)7/2 .

Substituting (18) into (13)-(16), we have
2 2 2
Qu,du 1o _&K (ﬂ) +(ﬂ)]e2", 1)

ar? a7 r or ar oz
Ta+lE) - @ﬁ 265 - ()]
r or dz ar ar az ’

(22)
_1__‘?£_2_‘9_“_ﬂ_—_ — Ky ( )(aV)e“, (23)
r oz ar oz ar dz

31( du du
+M+()wa
aV ﬂz 2u,
- (8r) +(az)]e ’

(21)~(23) are called the Einstein—-Maxwell equations of the
charged axisymmetric celestial body.

(24)

V. THE SOLUTIONS OF EINSTEIN-MAXWELL
EQUATIONS AND THE METRIC TENSOR (REF. 3)

From (20), it can be seen that the right-hand side is the
power series of 1/(7 2 + z°), therefore we can assume that
(20) contains the solution of this power series. Since 7r— «

Of Z— 00, oo =€ *= — 1 — 2, ¥ is Newton’s gravita-
tional potential, i.e.,
__ 6M GM(I, — I,) ( 32 1)
(r24+22)'2 202422 \r2 4 2
+oo, (25)

where G is the gravitational constant, M is the total mass of
celestial body, and AP = 0, we obtain

u=uy,+o.
Inserting (26) into (21), we have

(26)

3%uy l&_uq 32“0 Ko (8V) + (ﬂ)z] 2o+ ®)
ar? r ar 92 or 0z
(27)
Suppose that the solution of (27) is
a b cr?+dz?
= , 28
e T i T ey Ay (2%

where a, b, ¢, and d are undetermined coefficients. Let

a = (ko/2)(kQ)* = 47G(kQ)?, (29)
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B=1I1,—1,. (30)

From (20), (25), and (28), we obtain that the right-
hand side of (27) is

aV a_V: 2 2(u, + P)
[(8r) +(az) ] ¢

_ a 2GMa
T a A"
2aa — 6af + 2a(GM)? 9afr?
(r*+2)° (r?4+2)*

The above and following equations are taken approximately
up to 1/7° or 1/z%, then the left-hand side of (27) becomes

0%y 1 duy d’uy__ 2a 4 6b

ar?  r 9r 92 (r*4z25H)*  (r 42252
4c + 8d 6(c—d)r?
(r:+2°®  (r2+22)*°

Comparing the coefficients of the two sides of (27), we have
a=a/2, b= —jaGM,
c=a*/12 + laf + la(GM)?,
d=a’/12 — aff + la(GM)>.

Next, we find the expression for «. Since the right-hand side
of (23) is

(aV) (3V> 2w
ar) \ oz
_ 2arz 4aGMrz
2427 (A
_ [2a? + 4a(GM)? — 18a8 |7z _
(r2+22)*

(31)

30afrz
(r*+2)°

and

2_‘21 du
or 9z

_2(GM)°rz 4aGMrz
N T
[2a + 4a(GM)? — 188(GM)?]rz
(r2+22)*
308(GM)*rz
(r’+22°
Then Eq. (23) becomes
1 dk _ 2[(GM)*—alrz
A (r2+2)
308 [(GM)? — a]rz
(r:+2°
Integrating the above equation, we have
_ Ar? 3BAr?
T2+ (242

188 [a — (GM)?*1rz
T+ 27

1584r*
4(r2 4+ 22)*

+£(n),
(32)
where 4 = a — (GM)?. Now, since (22) becomes
1o —4 247
ror (r’+22)? (r:42%)3
34 2147
(r2+22)°  (r?+2)*
at the same time, its solution is

3084z
(r2+22)°
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At 3par? 15647
A i a8
(33)

Since r— «, k—0, hence f(r) = g(z) =0 and

Ar? 384r! 1584r*
= - . (34
T2 P42 i+ 2) 4

Finally, we obtain the nonzero components of the met-
ric tensor, i.e.,

2a 2b
800 = —exp[2<l>+ PESE + GTL A"
2(cr? +dz?)
“+dr) | 3
(r?+2%)° (33)
2a Ar?
gu=g22=exp[—2‘1>—- FEN + (r2 + 22)?
) 2[(c + 384)r  + d7]
R 7+ 27
1584~ }
_t, 36
2(r2-§—22)4 (36)
2
g33=r2exp[—2<l>——r2+Lz2
2
_ 2b _ 2(er + dZ%) ] . (37)
(r2422)3? (r’+2%)°
V. CONCLUSION

Equations (35)-(37) are the general formulas of the
exterior metric tensor that are applicable to all kinds of
charged axisymmetric celestial bodies. The constant B in ¢
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and d is different for different kinds of celestial bodies. For
example, for a cylindrical body, Bis R >/4 — I?/3 (where R
and 2/ are the radius and length of the cylinder, respective-
ly). For a cone body, Bis 3R 2/20 — 3h 2/80 (where Rand h
are the radius of the bottom and the altitude of the cone,
respectively). When 7— « 0or z— oo and/or r = z— oo, this
metric tensor tends to the metric tensor of Minkowski space.
And when Q = 0, i.e., there is no charge in the celestial body,
then

800 = — exp(29),

(GM)?r?
(r2+2)?
68(GM)*r? lSﬁ(GM)zr‘]
(r:+2? (2420
gy =rexp( —2P).

811=8n= CXP{ —2®—

+

are coincident with the PPN.*° The only difference in these
methods is the difference in their deriving process; the for-
mer approximation is taken at the end of the deriving process
and the latter is taken at the beginning.
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Collision of impulsive gravitational waves followed by dust clouds
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The evolution of a space-time containing two colliding plane impulsive gravitational waves
each of whose leading edges is followed by a distribution of null dust is determined. The
conditions on the Ricci tensor that ensure that the evolution of such a space-time is
unambiguous are determined. These are the same as those that apply in the planar case. The
equations of motion of the medium contained in the region of interaction of the dust clouds are
determined. These equations determine the change in energy density of each dust cloud as the
interaction proceeds and involve the functions whose specifications ensure that the evolution of

the space-time is unambiguous.

I. INTRODUCTION

Chandrasekhar and Xanthopolous determined two dif-
ferent exact solutions of the Einstein field equations that de-
scribe two different space-times, each containing two collid-
ing impulsive plane gravitational waves, each wave being
followed by a distribution of null dust. In the first solution’ it
was assumed that the region of interaction of the dust clouds
contained a perfect fluid with energy density € equal to pres-
sure p and in the second? it was assumed that this region is
filled with a mixture of null dusts moving in opposite direc-
tions. The space-times involved are identical in the regions
before the instant of collision of the impulsive waves. Thus
different assumptions concerning the nature of the energy-
momentum tensor in the region of interaction of the dust
clouds lead to different exact solutions to the Einstein field
equations, that is, to different solutions to the Cauchy initial
value problem posed on a spacelike three-surface that inter-
sects the wave fronts at a time earlier than the instant of
collision of the impulsive wave fronts.

In a recent paper’ the Einstein equations involving dis-
tribution valued curvature tensors for space-times admitting
the three-dimensional group of motions of the Euclidean
two-plane were discussed. It was shown that a similar phe-
nomenon exists, namely, if such a space-time contains two
colliding null hypersurfaces containing null dust, each of
which is followed by a distribution of null dust, then the
Cauchy data, on a spacelike three-surface that intersects the
fronts of the dust distributions before the instant of collision,
does not lead to a unique solution to the Einstein field equa-
tions unless additional conditions are imposed on the ener-
gy-momentum tensor in the region of interaction of the two
dust clouds.

In this paper the evolution of a space-time containing
two colliding plane impulsive gravitational waves whose
leading edges may be followed by distributions of null dust is
discussed. It will be shown that the generalized Einstein field
equations when written in terms of the Ricci tensor are iden-
tical with those that occur in Ref. 3. The conditions on the
Ricci tensor that were shown to be sufficient to make the
solutions of the Cauchy problem unique in case two planar
singular dust hypersurfaces collide are the same as those that
are sufficient to make the solutions of the Cauchy problem
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unique when two impulsive plane gravitational waves, each
followed by a dust cloud, collide.

In addition, the equations of motion of the medium in
the region of interaction of the dust clouds will be deter-
mined. It will be shown that the conditions imposed on the
Ricci tensor in order to ensure the uniqueness of the Cauchy
problem are those that determine the interaction of the dust
clouds with each other, namely, the change in energy density
of each dust cloud as the interaction proceeds.

Space-times that admit two commuting spacelike Kill-
ing vectors admit coordinate systems in which the line ele-
ment is given by

ds* =g, dx'dx’ + g, dx* dx ®, (1D
where

a,B=0,123, ij=03, AB=12, (1.2)

8.5076 7 =g, = e*n; = (8, — 258)), (1.3)

8.60465 =8ap = — ¢"Vap (1.4)

Yu=x"h Y= —@x"h ¥ra=x+a&/y (15

— ‘g = — det||g,p|| = 1. (1.6)

The quantities w, u, Y, ¢, are functions of x° and x*
alone. They may also be considered as functions of the null
coordinates
.7
(1.8)

u=x"—x
v=2x"+x3,

The null hypersurfaces ¥ = 0 and v = 0 will be used to
divide a region of space-time into four subregions:

region I, where u>0and v>0;

region II, where >0 and v <0;

region III, where # < 0 and v> 0;

region IV, where ¥ <0 and v < 0.

The hypersurface ¥ = 0 (v = 0) will be interpreted as
the wave front of a gravitational wave traveling in the x>
( — x*) direction. The variables

2x° = (v + w) (1.9)
and

2= (v—u) (1.10)
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are measures of the time from (1 = 0, v = 0), the instant of
collision, and the distance between the wave fronts, respec-
tively.

The study of the collision and subsequent interaction of
plane impulsive gravitational waves in a vacuum or when
coupled with the motion of a medium such as a perfect fluid
proceeds as follows: Exact solutions of the Einstein field
equations with the source terms derived from the energy
momentum tensor of the medium are sought. They are to be
such that the metric tensor is of the form given by Eq. (1.1)
and are to involve the variables # and v in region I. The
resulting g5 (#,v) is extended to region II (IIT) by taking
the metric there to be g,5 (4,0) [8.5(0,v) ]. It is further ex-
tended to region IV by taking the metric thereto be g5 (0,0)
and thereby ensuring that region IV is flat.

This method of extending the solution of region I pro-
duces metrics that are continuous across the hypersurfaces
u = 0 and v = 0 but may have discontinuous first derivatives
across these hypersurfaces. If so, the curvature tensor de-
rived from g, will be distribution valued, i.e., will contain
delta functions with support on these null hypersurfaces.

In addition, space-times with metrics obtained as above
are said to contain impulsive gravitational waves only if the
components of the Einstein tensor (equivalently the Ricci
tensor) do not contain such delta functions.

Il. THE STRENGTH OF AN IMPULSIVE PLANE WAVE

The wave front of such a wave, the null hypersurface, is
described by the equation

é(x) =0, (2.1)
where

d(x)=u (2.2)
or

#(x)=v (2.3)

if the coordinates of space-time are (, v, x', x*) and the line
element is given by Egs. (1.1)-(1.5). In case Eq. (2.2)
[(2.3)] holds, the wave is traveling in the positive (nega-
tive) x> direction. We shall denote by

fl=f"=f", (2.4)
where
[Tx) = lir(t)gf(u,v) [ lixgif(u,v)], (2.5a)

the value of the limit of the quantity f(x) as the event in
region I approaches the hypersurface u =0 (v = 0). Simi-
larly f ~ (x) denotes the limit of f(x) as the event in region III
(II) approaches the hypersurface u = 0 (v = 0). That is,

f(x)= lit(r’l_f(u,v) [lir(l)‘l_f(u,v) .

It has been shown in Ref. 4 that the discontinuities of the
first derivatives of the metric tensor across the hypersurface
2 are characterized by the tensor value functions of events

(2.5b)

on %, b,,, defined by the equations

1,0, = [8u.0] (2.6)
where
2623 J. Math. Phys., Vol. 29, No. 12, December 1988

9
I,=—"L=¢,. 2.7
ox’ i
It has been further shown in Ref. 4 that the components of
the Ricci tensor computed from the g5 with first derivative

discontinuous across X will have components free of delta
functions if

1,8%b .. =1,8°(b,, —i8,.b) =1,b"*, =0, (2.8)
where
b=g"b,, (2.9)

and we have raised indices by use of the metric tensor on =.

If = is part of the null hypersurface v = 0 separating
regions I and III and the line element is given by Eq. (1.1),
then

by(u) =g (0,)",

(2.10)
bp(u) = (845,) ™

When X is part of the null hypersurface v = 0 separating
regions III and IV, the b,, are constant given by setting
u = 0 in the right-hand sides of Egs. (2.10).

It follows from Egs. (2.9) and (2.10) that

b(w) =2((w,)* + (u,)7*) (2.11)
and hence
Fbiy=bj'= — (1,)"8),
gACb ca =b'AB = (gACgCB,v)+ - ((w,v)+ + (I‘,o)+)5;'
(2.12)
Thus Eq. (2.8) obtains if
[s,]=Ww,)*=0. (2.13)

It has also been shown in Ref. 4 that if Eq. (2.8) holds
and if

[Ru]=0, (2.14)
then

(71%),, =0, (2.15)
where

T=b"b,, —b%/2 (2.16)

and the semicolon in Eq. (2.15) denotes the covariant deriv-
ative in £ as computed from the Christoffel symbols involv-
ing either (g,5,)™ or (8,4, ) ~. In view of this conservation
theorem we may regard 7 as measuring the strength of the
impulsive gravitational wave.

When the space-time metric is given by Eqgs. (1.1)-
(1.6) we have when 2 is the hypersurface v = 0,

T= 29_2"([312,1,]2 - [gll,v] [g22,v])! (2.17)
as a consequence of Eq. (2.13). Thus
+ 32 + 72
~2f|(%) T+ T) @
X X

as follows from Eq. (1.5).
A similar discussion of the boundary separating regions
I and III, namely = given by ¥ = 0, leads to the equations
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b;(v) =g (0,)7,

bp(v) = (848.) 7 (2.105
and
b(v) =2((@,) " + (1,)") (2.11)
b= — (1,)*8, (2,12
by = (gACgCB,u)+ —((@.)" + (1) ")55.
Hence Eq. (2.8) holds if
[£u]=@)" =0, (2.13")

Equation (2.15) holds where now /, = u, = §;; and
7=2{[(q/D)" 1>+ [ (/)" 17} (2.18)

ill. THE RICCI TENSOR

It is a consequence of the fact that the coordinates of
space-time may be chosen so that the vectors § 4 and 8 4 are
Killing vectors that the line element of space-time is given by
Eq. (1.1), where the g; need not satisfy Eq. (1.3). Itis a
further consequence that the components of the Ricci tensor
are such that

Ri, =0 (3.1)
and

2RC, = (e "/ —g) (e —88'8%cai) s (3:2)
where

g = detl|g;||. (3.3)

In case Egs. (1.3) obtain

—g=e% (3.4)

Rew =l + 310 — 1u®u — Suus (3.5)

Royy=phuw 38ty + 0y — Sus (3.6)

Ry =t + 485 — 1,0, — Sus (3.7

where

S; = }7’,‘?87’,43,_,- = — (1/2X2)(,1’,f)(,; +9:.9,;), (3.8)
¥4 is given by Eq. (1.5), y*#is such that

Y*®Ysc =8¢, (3.9)
that is
Ye=y+g@/y., ¥2=q¢/yv, ¥*=Uy. (3.10)

It follows from Eqs. (3.2) and (3.4) that
2R CC —_ e—(#+w)(ep17ij),ij = e—w(’u’ij +,u,,- #,;)17'7

(3.11)

and that
2R4, =2RC.6% + e “*(e* Y ypem) ;. (3.12)

The equations R ,; = 0 then imply that

(€)= (W +1up,) =0 (3.13)
and

(e 7,y D + (etr,y™ W =0, (3.14)
where

Y= Vasll (3.15)
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In view of Egs. (1.5) and (3.10), Eq. (3.12) may be
written as

(e*qr. /X)), + (eqy, /¥, =0 (3.16)
and
(e xu/X) o + (¥ Yo /X) u = —2(e*/¥*)(92.95,)-
(3.17)

In the coordinate system in which Eqgs. (1.1) and (1.3)
hold, the Einstein field equations supplemented by the con-
dition R,z = O consist of the system of Egs. (3.5)-(3.7)
supplemented by Eqgs. (3.13), (3.16), and (3.17). In these
equations the R;; are assumed to be given as functions of u
and v. These quantities must of course satisfy the integrabi-
lity conditions for the determination of @ from Egs. (3.5)-
(3.7).

Note that if 4 and the matrix y are solutions of Eqgs.
(3.13) and (3.14) [equivalently (3.13), (3.16), and
(3.18)] and @° is a solution of Eqgs. (3.5)—(3.7) with R;
=0, then

o=0+a°

satisfies the latter equations with R, 70 if () is a solution of
the equations

Ru=—npQ, (3.18)
Ry =H (3.19)
R,=—pn,02,. (3.20)
The integrability conditions of these equations are
((lu',u)_lRuu),u =((/l‘,v)_1Rvu),u = -Ruv' (321)

These conditions restrict the possible sources of the gravita-
tional fields described by g,,,,.

It should be noted that in Refs. 1 and 2 Chandrasekhar
and Xanthopolous use coordinates (3°, 3°,x',x?) given in
terms of the coordinates (u,v,x',x?) used above by the equa-
tions

Y' =cos((v—u)/2),
Y =cos((v+u)/2),
so that the line element given by Eq. (1.11) becomes

042 2
b1 () () e
(3.24)

In Refs. 1 and 2 the variables ° and y* are denoted by 7
and u, respectively, whereas the quantity denoted by u above
is taken to be

(3.22)
(3.23)

2e* = cos u — cos V. (3.25)

The solutions of the transforms of Egs. (3.16) and (3.17)
are shown to be expressed in terms of the Ernst equation.

{V. THE VACUUM EQUATIONS

These equations are

R ;=0
That is, the R; vanish in Eqgs. (3.18)-(3.20). Thus 1 is a
constant that may be taken to be zero. In addition, Egs.
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(3.13) and (3.14), or equivalently, Egs. (3.13), (3.16), and
(3.17) hold as a consequence of R, 5 = 0. Either set of the
latter equations may be used to determine y 5 (u,v), that is,
y(u,v) and g,(u,v). Finally ©° may be determined as solu-
tions of the equations

Suu =H + %#‘.2“ _#,uw?u’ (41)
Suu =#,uv + %,u’,uu + iﬂ,l‘ l“,v + w?ﬂv’ (4'2)
va =H +%”,20 ——,u,_l,wf’v, (4’3)

where u satisfies Eq. (3.13) and the S;; are defined by Egs.
(3.8). The integrability conditions of Egs. (4.1)-(4.3) con-
sidered as equations for w° given 7,5 and u are satisfied as a
consequence of Eqs. (3.13), (3.16), and (3.17) or equiv-
alently of Egs. (3.13) and (3.14).

Chandrasekhar and Ferrari® showed that solutions of
the Ernst equation may be used to determine the ¥ 5 (#,0)
leading to the solution of Khan and Penrose® and of Nutku
and Hallil” for colliding plane impulsive gravitational waves.
Ferrari and Ibanez® have used the inverse scattering method
of Belinski and Zakharov® to obtain the ¥, (uv).

One may determine a solution of the equations describ-
ing the collision of impulsive gravitational waves by solving
Eqgs. (4.1)~(4.3) after determining ¢ and ¥, by either of
the two methods mentioned above.

To determine the impulsive waves undergoing the colli-
sion, the solution in region I is extended to regions II, III,
and IV as described in Sec. II. At the wave front v =0

T(u) = —(S,,)" (4.4)
andonu =0
()= — (S.)7, (4.5)

where 7(u) and 7(v) are given by Eqgs. (2.18) and (2.18'),
respectively. They measure the strengths of the respective
impulsive waves.

The situation is simpler when the plane impulsive gravi-
tational waves are linearly polarized, that is, when

q.=0, (4.6)
and the R; form a 2X 2 matrix of rank 1, that is,

R;= — 1,75 4.7)

As a consequence of Eq. (3.13) we have

e* =14+ Uu) + V(v), (4.8)

where U and ¥V are functions of u alone and v alone, respec-
tively. It is no restriction to assume that

U0) = V(0) =0. (4.9)
Equations (2.13) and (2.13") imply that
U'(0) =V'(0) =0, (4.10)

where the prime denotes the derivatives of the functions U
and V with respect to their arguments.
If we now set

@®=9°—Ju+In(U'(u)V'W)), (4.11)
Egs. (4.1)-(4.3) become

1+U+0NS,, = -U0'Q°, (4.12)

Suv = Q?uu’ (4'13)
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A+ u+v)S,=—VaQs, (4.14)

respectively. These equations are identical with Eqgs. (3.18)-
(3.20) if the §;; and R;; are identified and u is given by Eq.
(4.8).

Further, the former equations and Eq. (4.8) are the
same as the equations derived in Ref. 3 for the determination
of the line element of a plane symmetric space-time for
which the line element is given by Eq. (1.1) with Egs. (1.2)
and (1.3) holding and Eq. (1.4) replaced by

8up = — €O p.
It is a consequence of Egs. (4.6), (3.16), and (3.17)
that if

V2o=Iny, (4.15)
then

(e*o,), + (e*c,), =0 (4.16)
and

S; = —o0,0, (4.17)

It follows from Egs. (4.7) and (3.21) that there exists a
function A such that

T, =A; (4.18)

and A satisfies Egs. (4.16).

When R, = 0 and Eqgs. (4.7) and (4.18) hold, the en-
ergy momentum tensor of space-time may be interpreted as
either one due to a scalar field or as one due to a perfect fluid
with energy density equal to pressure.

The general solution of Eqs. (4.6) and (4.16) has been
given by Szekeres'® and by Tabensky and Taub.'! In Ref. 10
a class of specific solutions of these equations is listed. This
class includes the solution given earlier by Szekeres'? and the
one given by Kahn and Penrose.5

V.R,s=0and R, #0

Suppose that a space-time is such that in region I its line
element is given by Eq. (1.1) where p(u,v), ¥,45 (%,v), and
o(u,v) are such that y satisfies Eq. (4.8), v, satisfies Eq.
(3.14) [equivalently (3.16) and (3.17)] and

@=0+0°—ip+InU'()V'(v)), (5.1)
where Q° satisfies Eqs. (4.12)—(4.14) and Q is related to the
R by means of Egs. (3.18)-(3.20). Then if this line element

is extended to regions II-IV, as described in Sec. I, one finds
that the latter equations reduce to

RMu= —p,Qu, (5.2)

R"wy=RU =0, (5.3)

pl =1+ U, (5.4)
in region II.

In region III one finds

R"Wyy =RMypy =0, (5.5)

R"Ww= —p,Q, (5.6)
with

pM =14 V(v). (5.7
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In region IV one finds
R Ivij = 0

and

(5.8)

(5.9)

Thus in region 11 the Einstein energy-momentum tensor
T * given by

— kT =G (5.10)

is that of a null dust cloud moving in the x> direction behind
the wave front v = 0. Similarly in region III the energy-mo-
mentum tensor is that of a null dust cloud moving in the
— x? direction behind the wave front u = 0. Region IV hasa
vanishing energy-momentum tensor and is flat.

Region I of such a space-time is said to be the region of
interaction of the two null dust clouds moving in regions I1
and IIL If we are given R and R} then Q'(%,0) and
Q'(0,v) are determined but Q'(u,v) isnotfor u >0and v > 0.
This is the situation that obtains when two impulsive null
hypersurfaces # =0 and v = 0 each followed by distribu-
tions of null dust collide at u = Oand v = O (cf. Ref. 3). Thus
the evolution of a plane symmetric space-time in which two
plane symmetric impulsive gravitational waves, each fol-
lowed by a distribution of null dust, are not uniquely deter-
mined by the Einstein equations in the region of interaction
of the two dust clouds. That is, the solutions of the general-
ized Einstein field equations are not unique if only the initial
values of the metric tensor and its derivatives are prescribed
on a spacelike hypersurface that intersects the wave fronts
before the instant of collision. In other words, in such a case
the Cauchy problem does not have an unique solution.

Chandrasekhar and Xanthopolous in Refs. 1 and 2 have
selected two different choices of Q'(#,v) for the same values
of 0!(0,v) and Q'(4,0) by imposing two different require-
ments on the energy momentum tensor in region 1. In the
next section we show how the nature of the interaction of the
dust cloud in region II with that in region III determines the
energy-momentum tensor in region I and hence the function
Ol (u,p).

#II:__ l

VL. THE EQUATIONS T+, =0

That the above description of a collision of two dust
clouds each fronted by an impulsive gravitational wave does
not lead to a unique outcome is due to the fact that no ac-
count has been taken of the nature of the interaction of these
dust clouds. The situation is similar to that which obtains in
the theory of self-gravitating perfect fluids. In that theory
the energy-momentum tensor is not completely specified un-
til either a relation between energy density and pressure is
prescribed or a caloric equation of state is given and conser-
vation of particle number is postulated. Such additional as-
sumptions enable one to deal with the equations of motion of
the fluid and the determination of the gravitational field.
Without such additional assumptions the physical and
mathematical problems are not completely specified.

In this section we shall determine the energy momen-
tum tensor in region I and determine the equations of motion
of the medium contained therein from its divergence.
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In the coordinate system in which Egs. (1.1) and (1.7)~
(1.9) hold we have

du
Py =u,=96,-6,, (6.1a)
dv & 45
ax"_v”z R (6.1b)
and
ax* 1
o =—2~(56‘—5'3‘), (6.2a)
ax* 1
£y =-2—(63‘+5’3‘) (6.2b)
Let
ub=gMu =e “(64+6%), (6.3a)
vE=g"p =e (85— 6%), (6.3b)
then
utu, =uv, =vh, =vv, =0, (6.4a)
utv, =vhu, =vu, =uv, =2e"°, (6.4b)
and
uv;+ugv; —g;(uv;) =0. (6.5)
It follows that
- Rij =€ uu; + €U,V + C(u,,-vd- + qu,,-), (6.6)
where
ox' dx/
€= —R;,——= —R,, 6.7
! Y Ou v (6.72)
ax’ ax’
6= —R,—-—= —R,, 6.7b
2 Y v ( )
i 92
C= Rijfx_gi‘__ —R,= —R,,. (6.7¢)
a* av
In addition since R ,5; = 0, the scalar curvature obeys
—R=2C(u;v') =4Ce™". (6.8)
Hence
—G;= — (R; —4Rg;) = €uv; + €v,v; (6.9a)
and
— G =4Rgs = —2Ce~ g 5. (6.9b)
That is,
-G, =€u,u, +6v,v, —2Ce™ “g 6050 (6.9¢)

The energy momentum tensor 7,,, of the medium in
region I is given by

(6.10)

where « is the Einstein gravitational constant and G,,, is
given by Eq. (6.9¢). This energy-momentum tensor is that of
a medium consisting of two null fluids one with null four-
velocity u,, and energy density €, and the other with null
four-velocity v, and energy density ¢,. They are acted upon
by transverse stresses described by the last term in Eq.
(6.9¢).

The nature of this interaction may be determined from

—«T,,=G,,
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the equations of motion satisfied by the null fields, namely
the equations

—«T*, =G, =0.

These equations are

G*,=e @M (e@+WGH) 4 GPTH, =0.
Thus
e~ @M (TG Y) 4 GHTY, 4 GAPTY,, =0, (6.11)

where I, are the Christoffel symbols formed from the g,
and

Ffw = - %gAB, jg‘ j9
and

G*, =0 (6.13)

It is a consequence of Eqgs. (6.9) and the fact that

(6.12)

(; + w'Ti)u’ = (v, +v'Ti;Hw' =0,

that

u;(eu*), +v, ("), — (R/2p,; =0. (6.14)
Therefore

2(u”), —Ru, =0 (6.15a)
and

2(&u"), —Rp, =0. (6.15b)

These equations imply that the energy densities of the
two null fluids are not conserved in region I unless R =0,
i.e., C= R,, vanishes. Equations (6.15) describe the inter-
action between the two fluids. They may be rewritten as

e “etemu;), +2Cu, =0 (6.16a)
and

e “(etem;), +2Cu, =0. (6.16b)
These equations in turn may be written as

(€)Y, +C=0 (6.17a)
and

(€(p,) " ). +C=0 (6.17b)

as a consequence of Eq. (3.13).
In view of Egs. (6.7), Egs. (6.17) may be written as Eqgs.
(3.21). Since

() 'Ry), — ((#,)7'R,,), =0

there exists a function 2 such that Eqgs. (3.18) and (3.20)
hold.

As has been pointed out above, when R,, = C =0, the
two null dust clouds described by the energy momentum
tensor 7,,, via Eqgs. (6.9) do not interact. This is the case
described in Ref. 2. When

C? = €6, (6.18)
it follows from Eq. (6.6) that

— R, =V V,=V,V,5646, (6.19)
where

V= (e)"?u; + (&), (6.20)

2627 J. Math. Phys., Vol. 29, No. 12, December 1988

Equations (3.13) and (3.21) imply that the vector field
V,, is the gradient of a scalar that is the energy momentum
tensor in region I that is due to a scalar field or equivalently
that of a perfect fluid with pressure equal to energy density.
This is the case described in Ref. 1.

Vii. THE TWO FLUID INTERPRETATION
The energy momentum tensor T, determined by Egs.
(6.9) and (6.10) may be expressed as
«T,, = -G, =(w+pW, W, —pg,, +nu,u,,
(7.1)
that is, as the sum of that of a perfect fluid and a null fluid. It
may be shown that
W,=Wu,+Wu,
and that as a consequence of R, = 0, one has
(w+p)W”W“—2p=0.
Hence if
W, W#=0,
then
p=0

and T, is the sum of the energy momentum tensors of two
null dusts.
If

W, we=1,
then
p=uw,

and the first two terms of the right-hand side of Eq. (7.1)
form the energy-momentum tensor of a perfect fluid with
energy density equal to the pressure. It follows from the
equating of G, in Eqgs. (6.9c) and (7.1) that

2p WtZJ +n=g¢,
oW =g,
and
2pW, W, =C.
Note that when n = 0,
C?=¢6,.

That is, the medium in region I is that treated in Ref. 1.
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The Landau-Lifshitz (LL) equation is a universal model for integrable magnetic systems. It
contains the sine-Gordon (8G), nonlinear Schrédinger (NLS), and the Heisenberg model
(HM) equations as particular or limiting cases. It is well known that the NLS, $G, and HM
equations possess recursion operators. A recursion operator of an equation in Hamiltonian form
generates (a) a hierarchy of integrable equations, and (b) a second Hamiltonian operator and
more generally a hierarchy of Poisson structures. Here the recursion operator of the LL
equation is obtained algorithmically, and hence its bi-Hamiltonian formulation is established.

L. INTRODUCTION

The Landau-Lifshitz (LL) equation describes nonlin-
ear spin waves in an anisotropic ferromagnet. It is given by

S, =SAS,, +SAJS, (1.1a)
where

J =diag(J,,J5J5), S=(5,,5,5;), (L1b)

[SP=8S=1.

In the above the diagonal matrix J is a measure of the aniso-
tropy, J, <J, <J3, S is an x- and t-dependent vector of unit
norm in R and - and A denote the usual scalar and vector
products.

The partially anisotropic Heisenberg model (HM) and
the HM equations correspond to J,=J,<J; and
J, = J, = J;, respectively. It was pointed out in Ref. 1 that
the LL is the most general magnet model admitting an 7-
matrix formulation. Furthermore, both the sine-Gordon
(SG) and nonlinear Schrodinger (NLS) equations are
limiting cases of the LL equation. The analysis of the LL is
technically more complicated than that of HM, SG, and
NLS. This is because the isospectral linear eigenvalue prob-
lem associated with LL involves elliptic functions,?

3
U, (xt4) = —i(z &(x,t)%(ﬁ)c&)U(x,t,ﬂ)

=1
= — LU,
where the Pauli spin matrices are given by

é(o 1) _;(O —z) ;(1 0)

(1.2a)

(1.2b)
and
W, (A)=p[1/sn(A,k) ],
W,o(A)=pldn(4,k)/sn{A,k)], (1.3a)
Wi(A)=plen(d,k)/sn(A,k} ],
with
k=((J, = I/ — T2, O<k<], P$J'7;T—;‘§;
(L.

® Present address: Department of Mathematics, Stanford University, Stan-
ford, California 94304,
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In theisospectral problems associated with the HM, SG, and
NLS equations the spectral parameter A ranges over the
complex plane C; however, the natural range of A in (1.2) is
an elliptic curve: The torus E = C/T, where I' is the lattice
generated by 4K and 4K, where K and K’ are the complete

elliptic integrals of moduli k and k' = {1 — k.

The Lax pair of the LL was found by Sklyanin? (see also
Ref. 3), who also obtained the action-angle variables (for
rapidly approaching a fixed unit vector boundary condi-
tions) by introducing the notion of the classical r matrix.
The initial value problem for similar data was studied by
Mikhailov* (see also Ref. 5) using a Riemann—Hilbert prob-
lem on an elliptic curve. A general description of finite-gap
solutions was given in Ref. 6 and explicit formulas were ob-
tained in Refs. 7 and 8 in terms of Prym theta functions.

Algebraic properties of the LL were studied in Ref. 7
where also the next member of its hierarchy was explicitly
given. Fuchssteiner® presented hierarchies of time-indepen-
dent symmetries, time-dependent symmetries, and con-
served quantities using the notion of a master symmetry in-
troduced in Ref. 10. However, the recursion operator could
not be found and hence its bi-Hamiltonian formulation
could not be established. This is a serious disadvantage since
the bi-Hamiltonian property appears to be a fundamental
property underlying integrability.''~'* Indeed, the bi-Hamil-
tonian formulation of NLS and SG is well established. Also
the recursion operator and the hierarchy of Hamiltonian op-
erators associated with the HM have been found in Ref. 16
using the gauge equivalence of the HM to the NLS.'"'8

There exist various approaches in the literature for con-
structing recursion operators.'® We favor the one that uses
the associated isospectral problem. Indeed, this approach
has also been successful for obtaining recursion operators in
lattices®® and in multidimensions.?! Also, it has the advan-
tage to yield hereditary recursion operators.?? In Sec. II we
illustrate our method by deriving the recursion operator of
the HM equation; this operator coincides with the one given
in Ref. 16. In Sec. I1I we derive the recursion operator of the
LL equation and establish its bi-Hamiltonian factoriza-
tion.?

The method of deriving the recursion operator from an
isospectral problem makes crucial use of a certain expansion
in powers of the spectral parameter A. The main difficulty we
encountered in applying this method to LL stemmed from
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the fact that A moves on an elliptic curve. This problem was
bypassed by using the parametrization

v=\W WL W, p=W3,

V=lp+a)u+p); ax—i(J, -,

B=—1(J,— ).

This paper is organized as follows. In Sec. I A we review
the basic notions of symmetries, gradients of conserved
quantities, recursion operators, and Hamiltonian operators.
In Sec. I B we establish the connection between these results
and those of Fuchssteiner® by showing how the recursion
operator derived in this paper algorithmically implies the
master symmetry found in Ref. 9. In Secs. IT and III we

derive the factorizable recursion operators of the HM and
LL equations, respectively.

(1.4)

(1.5)

A. Basic notions

We consider the evolution equation (1.1) in the abstract
form

S, = K(S). (1.6)

Let E denote the vector space of C * maps from R into R?
and let TE denote the space of suitable C ~ vector fieldson E.
The manifold on which the flow (1.6) takes place is denoted
by M and the space of its smooth vector fields by TM. Clear-
ly, M is a subspace of E such that SeE satisfies S-S = 1.
Similarly TM is a subspace of TE such that V(S)eT  E satis-
fies P (S)+S = 0, i.e., ¥V (S(x))belongs to the tangent plane of
the unit sphere at S(x).
In TM we define the usual Lie bracket by

[K.G],=K'[G] -G'[K], (1.7a)

where K '[ G] denotes the Fréchet derivative of K in the di-
rection G, i.e.,

K'[G]#a%K(S+ €6)|._,. (1.7b)

Let T*M be the dual of TM with respect to the bilinear
form

('y,a)#f dx yo, yeT*M, oeTM. (1.8)
R

Let I: M—>R be a functional; then its gradient, VI, is
defined by

I'[v]=(VLv), veTM. (1.9)
It is well known that a function fis a gradientiff /' = ( f') ¥,
where the adjoint L * of an operator L is defined by
(L *v,0) = (9,Lo). In order to make the gradient unique
we consider its projection onto the tangent plane of the unit
sphere in R? at the point S(x); i.e., S = 0.

The conserved quantities of the LL equation take the
form

I=f dx(I'(S) — '(e)), e=(0,0,1)", (1.10)

R

where we have assumed that S—eas x— + oo. As an exam-
ple consider
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H, =f dx(Ty(S) — Ty(e)), To= é- (SUS—S,8,).
R
(1.11a)
Then

H{v] =f dx(vJS —v,.S,) =J dxv(JS+S,.).
R R

Thus
VH, =7n(S,, +JS), ma=—-SA(SAa)=a— (aS)S.
(1.11b)

(i) The hierarchy of the LL equation consists of all
flows that commute with (1.1); i.e., it consists of all time-
independent symmetries 0. We recall that o is a symmetry of
(1.1) iff

do

—‘—9?+ [fo,K], =0, o0eTM.

(ii) Equation (1.6) is a Hamiltonian system iff it can be
written in the form

S, = OVH, (1.13a)

where ® is a Hamiltonian operator, i.e., ©® is skew symmetric
with respect to (1.8) and it satisfies, also, the Jacobi identity,

(VI,,®'[VL]VI;) 4 cyclic permutations =0,
VIeT*M, i=12,3, (1.13b)

and H is a functional. The Hamiltonian operator ® induces
the following Poisson bracket:

{1,,L,}=(VI,,0VL,).

(1.12)

(1.14)

(iii) A functional ] is a conserved quantity of (1.6) iff
I'[K]=0,o0r [cf. (1.13a) ]

I'[K] = (VI,OVH) = {ILH} =0.

It turns out that it is more convenient to work with gradients
of conserved quantities; these conserved gradients satisfy

a—”+7/[K] + (K)*[y]1 =0, y=VL

1.15
" (1.15)

For Hamiltonian systems there is an isomorphism be-
tween the Lie commutator (1.7a) and the Poisson bracket
(1.14),10-12

[OVI,,OVL,], = OV({I,.L}). (1.16)

This isomorphism implies that, for a Hamiltonian system,
symmetries and gradients of conserved quantities are related
by

o=0VI, 0eTM, VIeT*M. (1.17)

It is well known that the LL equation is a Hamiltonian
system. Indeed, it can be written in the form:

S, =SAVH, (1.18)
where VH, is defined by (1.11) and ® = S A is a Hamilto-
nian operator (® is obviously skew symmetric and it is a
straightforward exercise to show that it satisfies the Jacobi
identity).

Fundamental role in the characterization of the algebra-
ic properties of integrable evolution equations is played by
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hereditary (Nijenhuis) recursion operators.
If @ is a hereditary (Nijenhuis) operator then

[PK, "K' ], =0, ((PF)"VH,O(®H)"VH)=0,
(1.19)

and ¢"® are Hamiltonian operators compatible with @, for
all n,meN. (Two Hamiltonian operators are compatible if
their sum is a Hamiltonian operator. )

In Secs. IT and 111 we derive hereditary recursion opera-
tors for HM and LL equations. Then &K, (®*)"VH,,
®"(SA ) define hierarchies of commuting symmetries,
conserved gradients in involution, and Hamiltonian opera-
tors, respectively.

B. Master symmetries

The general theory associated with master symmetries
of evolution equations in one spatial and one temporal di-
mension is well established.?"****> Here we only note that
given a time-dependent symmetry o of the form

o =0+ toy, (1.20a)
and a recursion operator P, then

7= Do, (1.20b)
is a master symmetry. Alternatively, if

Y="Yo+ " (1.21a)
is a time-dependent conserved gradient, and ¥ = &%, then

T = 0¥y, (1.21b)
is a master symmetry.

It turns out that

7=8AY (x8), (1.22)

where W, ; is the adjoint of the recursion operator of the LL
[see Eq. (3.1)], is a master symmetry of the LL equation.
This coincides with the one given by Fuchssteiner.®

{l. THE HEISENBERG MODEL (HM)
The HM equation is given by

8, =SAS,,, SS=1 2.1
Its associated isospectral eigenvalue problem is given by
H 3
U, ==Y S0, (2.2)
A =

where A is the spectral parameter and the Pauli matrices o,
are defined in (1.2b).

Proposition 2.1: (a) The isospectral eigenvalue problem
(2.2) yields the recursion operator ®y;,, defined by

Pum = —L[SAD—{D'(SAS.)]S,]. (2.3

(b) The adjoint of Py, withrespect to the bilinear form
(1.8),

Vum =Py = —USAD—{D "' (SD")}ISAS,) (2.4)
satisfies
SAWy ) =P (SA ). (2.5)
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(c) The isospectral problem (2.2) is associated with the
hierarchy of integrable evolution equations,

S, =SAVYEM(SAS,) =P (—8,), n=0123,..
(2.6)

The HM equation corresponds to n = 1.

(d) The hierarchy S A Wi, n = 0,1,2,..., is a hierarchy
of Hamiltonian operators. In particular the second Hamilto-
nian operator of the HM is given by Qy,; =S A ¥,;; thus
the HM is a bi-Hamiltonian system with compatible Hamil-
tonian operators SA and Q.

Proof: Given (2.2) we look for compatible flows in the
form

3
UI - —'i Z VIUIU‘ (2.7)

I=1
The compatibility condition U,, = U,, of Eqgs. (2.2) and
(2.7) implies

S, =AV,_ —2SAV, V= (V,V,Vs). (2.8)
We seek solutions V in the form
V=3 Vi -k (2.9)
k=1
Then (2.8) yields
S, =V, (2.10)
VU+D Z28AVYD, j=1,.,n—1, (2.11)
SAVM =0, (2.12)
Since V{/-8 = 0, we define v' as follows:
v —SAVY, (2.13)
with
v7§ =0. (2.14)
Then Eqgs. (2.10)~(2.12) are transformed into
SAS, = — ¥, (2.15)
vt = _2[SASADH{SAYH)], (2.16)
SAD ~HSAvV™) =0. (2.17)

Wessolve Eq. (2.16) for v as follows. Equation (2.16)
is equivalent to

vU+D =2D " {SAV P} —2(S-D "H{SAV/}H)S.

Hence

v/ D =28 AV —2(S.D IS AV))S,
—2(SD " H{SAV}H,S. (2.18)

From Eq. (2.18), taking S A and S- of both sides we obtain

SAVUTD = _2v? . 2(SD " HSAVHSAS,
(2.19)
and
S'V,(‘j"' n_ __ 2(SD -I{S/\V(j)})x,
ie.,
28D "HSAV P} = — D THSwDY, (2.20)
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Substituting in (2.19), we get

v = — JSAVIT D_{D Y (SvIU+*)ISAS,),
(2.21)

ie. [cf. (2.4)],

v = Pyt D,
So,

v(1) = - IV("),
and solving (2.15) and (2.17) we get

S, =SAVY"~!(SAS,). (2.22)

In the Appendix, we show that S A and 0, are compatible
Hamiltonian operators, thus establishing the bi-Hamilto-
nian structure of the HM.

Remarks 2.1: (i) Equation (1.15) is derived by differen-
tiating (7,K) = Oin the arbitrary direction v, where v:S = 0.
Thus one can extend the definition of a conserved gradient
by allowing functions ¥ that are not of the form 7, provided
that

SA(Z+ 7K1+ K)*171) = (2.23)
([# — (#)*"]ab) =0, a,b orthogonal to S. (2.24)
Indeed the starting ¥ of the HM hierarchy satisfies
y=SAS,, 7K1+ (KN [F]= —3(S,5,).S,
(2.25)
([# — (#)*1ab) = (S, Aa,b) =0. (2.26)

(ii) \IlHM (S /\Sx) = ﬂsxx = vHo, Where

Ho$fw dX(Fo(S) - Fo(e))’ I-‘0 = - % Sx.sx'
” (2.27)

(iii) YV=xSAS, is a conserved gradient of

the HM. Hence
7=V, (XSAS,) =xSAVH; +SAS, (2.28)

is a master symmetry of HM. This coincides with Eq. (12) of
Ref. 9if J=0.
(iv) It is shown in the Appendix that the operator
Qv =S A Yy, satisfies the Jacobi identity. Since S-a =0,
Quy is equivalent to £ = 4D + D{SD ~'(S,+)}). How-
ever, in order to prove the Jacobi identity for £ we have to
take into account that Qasb = OQbec = Q¢-a = 0, which are
Fréchet-derivative consequences of the equations S-a
=8Sb=Sc=0.

—uS,,

Ill. THE LANDAU-LIFSHITZ (LL) EQUATION

Proposition 3.1: (a) The isospectral eigenvalue problem
(1.2) yields the recursion operator ®;; defined by

Dy, =Phy — 17((44S)A(SA )
—(D~{S44SA(SA)})S,
—(D~YHS(SA "), })(44SAS)). (3.1a)

(b) The adjoint of ®,; with respect to the bilinear form

(1.8) is
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W, =W, +ISA((44S)A- — (D ~{S44SA-})S,

— (D~Y{S'D-})44SAS), (3.1b)
and satisfies
SA(WL) =P (SA) =0y, (3.1¢)

(¢) The associated hierarchy of integrable evolution
equations is given by

S, =SAVY] (aSAS,), n=0,12]3,., a=const,
(3.2a)
S, =SAV¥Y;.(0), n=0,1,2,3,... (3.2b)

The LL equation corresponds to (3.2b), n = 1. Note that in
(3.2b) D ~1(0) is understood as a constant.

(d) The hierarchy SAY}, , n =0,1,2,..., is a hierarchy
of Hamiltonian operators. In particular, the second Hamil-
tonian operator of the LL equation is given by Q,;
=SAVY,,, thus the LL is a bi-Hamiltonian system with
compatible Hamiltonian operators SA and £, ; .

Proof: Given (1.2), we seek compatible flows in the
form

U,=—1{z WVa]U (3.3)
-J

=1

The compatibility condition U,, =
and (3.3) implies

U, of Egs. (1.2)

3
Z S, Wio; — ¥ VixWo;
i=1 j=1
3 3
—i{s swe, 3 V,W,a,] —o, (3.4)
j=1 =1

Equating coefficients of o, for j = 1,2,3, one obtains

81 = QW W/ W) (S3V,— S, V3) + Vi, (3.5)

and cyclic permutations.
In terms of the parameters u,v [cf. (1.4) and (1.5) ], we
get

Sy = [ +B)/vI(SVy— S V) + Vi,  (3.6a)

S, =[(u+a)u/v](S,V;— S V) + V.., (3.6b)

S, =[u+B) (e +a)/ VISV, —S\V,) + Vs,.
(3.6¢)

We seek solutions V), j = 1,2,3, in the form

v, = ,u(,u-H?) Z "l 4+ 3 unIb{P, (3.7a)

i= ji=0

AR S p" b, (3.7b)
v i=o j=o

v = WAL D $ yrigs 4 § = tp .
j=0 j=0
(3.7¢)
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Upon substitution of (3.7) in (3.6) one obtains

S, = _pp+h) <

v

_S, (.___._'“(/""a) S um ey + Z p"‘fbéj))] ,
j=0 j=0

v
ie.,
S, = ,U(Ii‘l'ﬁ) i n— j(ag‘)

j=o ji=0

and similarly for the other two equations.
Equating coefficients of x/ and v~ 'u’ independently,
one obtains

SAa® =0, (3.10)

SADBY =alP, (3.11)

SAaU+) = {b? — (44 S) Na P}, (3.12)

S, =b{" — (44S) Aa™. (3.13)

We define

g P = —SA{b — (44S) Aa*"}. (3.14)
Then (3.12) yields

1g” =a* D _ (SaltV)s. (3.15)
Since al/* 18§ =0 [cf. (3.11)],

2+ = 1(q” — {D ~1(S-q\")}8). (3.16)

Applying the operators (44 S) A and D(SA)D on (3.16)
we obtain

(44S) Aa+ P = (48) A q?
—{D1(Sq¢")}(A4S)AS, 3.17)
and
—bUHD 4 (SDUFD).S 4 (SHUH)S,
=1D{SAq” — [D~'(Sq¢{”)]SAS.}, (3.18)
because of (3.11).
Taking S- of (3.18), (3.12), and (3.17) we get
— (S'b,((j'* l)) + (S.b(j+1))x =%S'D{S/\q,(‘j)}, (3.19)
SbU+D =8(448S) Aa/+ D, (3.20)
and
S:(44S) AalU*T D =18-(44S) Aq*”. (3.21)
Therefore
SbU+D =1D S [D{SAQ”} + (44 S) /\q“';]z}i
(3.22)

From (3.14), (3.17), (3.18), and (3.22) we get [cf. (2.4)
also]

q(j+ n_ W%{Mq(ﬁ + %S/\((4A S) /\q(j)
— (D Y{S-44SAq''}H)S,

— (D~ '{Sq{"})(44S) AS), (3.23)
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— 50§ +8:657) + z l‘"_j(b gjx)

zﬁ‘" al? + zf‘" Iph — #(,u+ﬂ)[ ((ﬂ+a)(,u +8) 2 " ia§1)+j;0#"—fb§j))

(3.8)

n—1
—4pS,a") —4 T p"A(S,af D

==

1
— S,ali+ Dy,

3.9)

I

therefore establishing (3.1b).
Remarks 3.1: (i) ¥, = xS is a conserved gradient for the
LL equation not, however, in T*M. It turns out that

T=SAY, (xS) =x(SAS,, +SAJS) +SAS,,

(3.24)
is a master symmetry of the LL equation.
(ii) In the isotropic limit (4-diag(0,0,0)),
q>LL - q’%m .

(iti) There exist several equivalent forms of the recur-
sion operator ®,; and of the second Hamiltonian operator
€ . One may verify the Jacobi identity of these equivalent
forms by using the approach of Remark 2.1 (iv).
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APPENDIX: SKEW SYMMETRY AND JACOBI IDENTITY
FOR THE OPERATORS © AND Q,,,

In this appendix, we prove that the operator £, given
by the formula

Quma = SA (¥ a) = i(a, — D{SD ~'(S-a,)})

is a Hamiltonian operator compatible with ® = SA.

In the following ‘=" will denote equality up to perfect
derivatives.

(1) Qs is skew symmetric. Consider a,bin 7 *M; then

2(Quma)b=a.b—bD{SD ~'(Sa,)}
= —ab, + (b,S)D ~!(S-a,)
= —ab, — (Sa,)D ! (Sb,)
= —ab, + (aS,)D ~'(SD,)
= —2Quubea,

(A1)

therefore
(Qymab) = — (a,Qyub). (A2)
(ii) Qy\ satisfies the Jacobi identity. Consider a,b,c in
T*M; then
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4(Qm [Qambla)e={b,c, — (S«c,)(Sb,) — (S,c,)D '(Sb,)}D ~'(Sa,)

—{b,:a, — (Sa,)(Sb,) — (S,a,)D ~'(Sb,)}D ~!(Swc,).

Therefore,

4(Qip [ Qumb]a)e + (cyclic permutations of a,b,c)

(A3)

={b,*c, — (S¢c,)(Sb,) — (S,°c,)D ~'(Sb,)}D ~!(Sa,)
+{—b,a, + (Sa,)(Sb,) + (S;a,)D "' (Sb,)}D ~'(Sw,)
+ {c,-a, — (S-a,)(Sc.) — (S,a,)D " '(Sc,)}D '(Sb,)
+{—=c,b, + (Sb,)(Sc,) + (S;b,)D ~'(Sc,)}D ~!(Sa,)
+ {a,b, — (Sb,)(Sa,) — (S,,)D ~'(Sa,)}D ~'(Swc,)

+{—a,c, + (Sc,)(Sa,)+ (S;c,)D " '(Sa,)}D '(Sb,)=0.

(A4)

(iii) The Hamiltonian operators §;,, and © are compatible, i.e., their sum is a Hamiltonian operator.
Since 1y, and O are Hamiltonian operators, it is sufficient to prove that

({Qm [Ob]a + @' [Qyyb]al,e) + cyclic permutations = 0,

for any a,b,c in T*M.
Indeed

—2(Qyn [Ob]a 4 O'[Qyyybla)c

(A3)

= (SAb¢)(S4a,) + [(SADb),«c](S4a,) + (cS,)D "'(SAba,) —b, Aac + (SAacc)Sh,
= — [(SAb),c]D ~'(Sa,) — (SAb«c,)D ~'(Sa,) + [(SAb),c]D ~!(Sa,)
+ D '(S¢,)(SAba,) — (b, Aac) — [(SAa),«]D~'(Sb,) — (SAac,)D ~(Sh,)
= — (SAb<,)D ~'(S-a,) + (SAba,)D ~!(S«c,) — (b, Aac) — (SAa,c)D ~!(Sh,) — SAac, D ~'(Sh,).

So

2(Q4y [Obla + @'[Qbla)«c + cyclic permutations of a,b,c

(A6)

=b, Aac + (SAbc,)D ~'(S-a,) — (SAba,)D ~'(Sc,) + (SAa,)D ~!(Sh,) + (SAac,)D ~'(Sb,)
+ ¢, Aba+ (SAca,)D " '(Sb,) — (SAch,)D ~'(Sa,) + (SAb,a)D ~'(Swc,) + (SAba,)D ~'(Sc,)
+a,Acb+ (SAab,)D " (S«c,) — (SAac,)D "' (Sh,) + (SAc,b)D~'(Sa,) + (SAch,)D~!(Sa,)

= (bAaw<),=0.
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Partition functions with periodic and twisted boundary conditions are constructed for ¢ < 1
minimal conformal field theories using the modular transformation properties of the characters
of the Virasoro algebra alone. The construction helps to clarify the connection between twisted
partition functions of ¢ < 1 and periodic Gaussian conformal field theories.

I. INTRODUCTION

Following the work of Cardy,' Cappelli et al.,> and
Gepner® we were able to determine the operator content of
¢ < 1 minimal conformal field theories (CFT’s) using modu-
lar invariance and a relation between modular properties of
the characters of the Virasoro algebra and those of affine
algebras. The classification of modular invariant bilinear
forms of affine characters then allows one to find all modular
invariant partition functions in which the coefficients of bi-
linear forms of characters of the Virasoro algebra are integer.
The task of finding all the partition functions with positive
coefficients,

Z=3 Niax.(nyai(n), (1)

where N, ;€Z * and 7 is the modular ratio, has been per-
formed for up to m’ = 100. This m’ is defined through the
value of the central charge c,

c=1—~6(m—m)*/mm, (2)

where m and m’ are relatively prime integers [ (m,m’) = 1].

Besides two infinite series of solutions, the diagonal se-
ries for m' =4,5,6,... and the so-called AD series with
m' = 6,8,10,..., they found exceptional solutions with
m' = 12, 18, and 30. One of the advantages of the group
theoretic construction of Refs. 2 and 3 is that it allows find-
ing Z, symmetries present in these models; the Z, groups
correspond to symmetries of Dynkin diagrams of groups as-
sociated with individual solutions.

Nevertheless, it is clear that the construction of a com-
plete set of modular invariants in a given CFT, with known
character functions of known modular properties, should be
possible without making use of their relation to the char-
acters of the affine algebra. The purpose of the present paper
is to demonstrate one possible construction of that kind of
purely algebriac nature. Such a general construction may
become useful for other CFT’s, which cannot be readily re-
lated to affine theories.

There are some other advantages of the algebraic meth-
od discussed in the paper. Among others, partition functions
with twisted boundary conditions, when they are appropri-
ate, are obtained simultaneously. Such partition functions
were obtained previously by Cardy* and Zuber.®> Further-
more, it was pointed out by Di Francesco et al.® that known

® Permanent address: Department of Physics, University of Cincinnati,
Cincinnati, Ohio 45221-0011.
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positive definite partition functions with periodic boundary
conditions can be constructed from combinations of Gaus-
sian (Coulombic) partition functions. These Gaussian
forms and their extension to twisted boundary conditions’
can be obtained directly from our algebriac construction as
well.

In Sec. II, we introduce some definitions and set up the
algebraic program of constructing all partition functions.In
Sec. III, we deal with the actual construction, valid for all
possible Z, groups and all possible twists. Partition func-
tions for periodic boundary conditions are also discussed. In
Sec. IV we determine which of the Z, symmetries can be
realized in a given CFT. In Sec. V, a summary of our results
is given. In the two appendices, algebraic problems arising in
the process of the construction are dealt with.

Il. MODULAR PROPERTIES OF PARTITION FUNCTIONS
WITH TWISTED BOUNDARY CONDITIONS

For the sake of establishing notation we discuss briefly
the modular properties of partition functions with twisted
boundary conditions. Operators 7" and .S acting on char-
acters y, (7), where A is related to the dimension of the pri-
mary field A = (1% — 1)/2N and N = 2mm’, are defined as
follows?:

Tyy(n)=x.(r+ 1), (3

Sxa (1) =y, (—1/7). 4

The symmetry properties of the characters are

YoM =xy_,(N)=x,, n(1)= —Ya.(7), (3
where A, satisfies

AA=A(rm’ —sm) =rm’ +sm mod 2N. (6)

Bilinear combinations of character functions transform
under the following representation of the modular group*:

Sya (Nya(r) = % > A ANy (T2 (1),
(7N

Ty (P)xa(7) = ™A =472 (12 (7). (8)

The range of summation in Eq. (7) is O0<A AN — 1.

If an operator Q, having eigenvalues Q = 0,1,2,...,n — 1,
with periodicity »n, exists and is conserved,
[Lo,01 = [Ly, @] = 0, then partition functions with twisted
boundary conditions can be defined on a complex torus,*?
using the operator
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3k = exp{27iQk /n}, k=0,1,2,..,n— 1. (9)
Partition functions with twists in two different complex

directions satisfy the following modular transformation
rules®:

TZ kha(r) = Z M+ *k(7), (10)
SZ¥kka(ry = Z ~ Rk (7). (1)

The existence of a charge conjugation operator C, satis-
fying [L,,C] = [LO,C ] =0and QC + CQ = 0, implies that

Zka(r)y =Z ~ R (7). (12)

The partition function Z can be expanded in charge states, as
follows:

—~ n—1

Zkk(r) =Y exp {217'1 Ok, } Z%%k(1),

g=o0

where Z 2*(r) is a physical partition function defined on a
cylinder and as such it has a character expansion with in-
teger coefficients

(13)

Z2%(r) =3 N&x. (Dya(n), (14)
where N 25eZ *.

The mteger expansion coefficients satisfy the angular
momentum constraint

AN(A —A)=A2—212=2NQk/n mod2N. (15)

Furthermore Eqs. (7) and (11) imply that they also
satisfy the following consistency condition:

LR 2 Z COS(MZﬁ)
QK" 43¢ n

Nt =L

NZ%, (16)

X exp [ZWIM]

where the operator R imposes symmetry properties (5) ona
function of A and A. Equation ( 16) is just the generalization
of Cardy’s self-consistency equation® for twisted boundary
conditions. _
Let us define now the symmetric partition function Z:

ZMr) =YZ*Kn) + Z4 (). (17)
The function Z is obviously invariant for the exchange of

toroidal boundaries (.S). The coefficients of its character ex-
pansion satisfy the equation

Zk; =5Zk%; =1 Y exp [2171M] zZk
Ax (18)
Also, using Egs. (13) and (15) we obtain
= A2 Zz ok
Z5; =cos|m Y N
(9
= cos(2r25) N9 (19)
[+] n

In other words, the symmetric partition functions with
twisted boundary conditions must be linear combinations of
eigenvectors of .S of eigenvalue 1, of the form
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¥, 5 =cos{m(A?— A %)/N)N, 3, (20)

where N, ;€Z *. After finding the appropriate symmetric
partition functions, Eq. (19) allows one to decompose these
coeflicients into components N2,

For the sake of simplicity, from this point on we shall
only consider Z, groups with prime n. This is sufficient for
¢ < 1 theories. The generalization to nonprime values of # is
straightforward, though tedious. It follows from (15) that,
for prime n, A — 2 and A + 1 are even. Therefore the nota-
tion

== (21)

will be introduced. Then we can rewrite (18) and (19) as
71;.,::, = Sz,; X5

2M—1 M—1 X, + %% | =
= __R exp [277'1 - } ko
xlz—o xzz=0 .
(18)
VAR cos( ) SN2 (19"

The symmetries of the characters are reflected by the
following symmetry properties of the coefficients N (the su-
perscripts Q and k are suppressed):

N, ., =N

X3 X2 XuXx, T N—x,,~x2

(22)

In the first part of this discussion the antisymmetrization of
the expressions in A —Ay4 and A — A, will not be enforced,
consequently the positiveness of the integer coefficients
should not be enforced either.

X, +2M,x, — Nx, +Mx,+ M

lIl. CONSTRUCTION OF PARTITION FUNCTIONS

Operator S of Eq. (18) has M ? eigenfunctions of non-
zero eigenvalue. Labeling these eigenfunctions with
0<a,b<M — 1, they can be written as

x,—a

Y= exp{Zm —] &M, + i exp[Zm ] &M
M
+ P exp { 27i & ]6x2_ R

+ > exp [ 2mi 1;;‘] &, (23)

where s = 0,1,2,3 and 8" is a periodic Kronecker delta of
period M. These eigenvectors belong to eigenvalue #. We
only need eigenvectors of eigenvalue + 1 (s =0). Their
number is M 2/4 + 2 and they automatically satisfy the sym-
metry requirement for the exchange (x,,x,)
—=(—x, —x,),

¥, = exp {2171 —] &Y, + exp {Zm x.] &,

+ (xpX3) = (— xy, — X3). (24)

A general eigenvector of S of eigenvalue + 1 can now be
written as
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‘y(xl,xz) - z ca,b‘l}a’;, (xl,X2)- (25)
a,b

We call an eigenvector admissible if it is of the form (20),

W(x;,x,) = cos(zrr "11‘{2) N(x,,%,), (20")
where N(x,x,)eZ and it satisfies symmetry propemes
(22).

The most general admissible eigenvector of S, as is prov-
en in Appendix A by considering constraints on coefficients
€5, has the form
W(x,,x,) = cos (27 %{"—2) SNE ME, (%), (26)

K
where K = 1,2,...,M runs over the divisors of M, N¥ is an
arbitrary integer for all r, and r,, and “‘structure constants”
M¥ (x,,x,) are also integers, having the form

2M/K -1 K—1

X X®©

=0 =0

+ (rpr2) = (—ry, "‘"2))+ (x; — x3),
(27)

K
M, (x,x;)~ K:. +n x; oMK+,

where r, =0,1,....K — 1, r, =0,1,...,M /k — 1. The equiv-
alence sign ~ implies equality up to an overall integer multi-
plier. The set of admissible eigenfunctions (27) defined
above is usually overcomplete.

Partition functions for periodic boundary conditions
have only contributions corresponding to integer spins, im-
plying x,x, = Omod M, whichissatisfied onlyif r;, = r, = 0;
consequently the partition function (expanded in char-
acters )} should be a linear combination of the form (26) with
r, = r, = 0 antisymmetrized for the exchanges A«>4,1 and
A<»AoA. Of course, such an antisymmetrization generates
negative terms even in the fundamental domain
I<r<m — 1, 1<s<m’ — 1 [see Eq. (6)] except for the diag-
onal invariant, K = 1. The negative terms should be elimi-
nated by taking appropriate linear combinations of terms of
different values of K.

The known positive definite modular invariant partition
functions' can be expressed by our invariants M*¥ (x,,x,)
as follows: The diagonal invariants' are

ZW(x1,x0) ~M ' (x,,%,), (28)
while those of the second infinite series of Cappelli ez al.? can
be written as a combination of K = 1 and K = 2 terms,

Zm(xpxz)"‘Ml(xpxz) —RMz(xvxz): 29)
where R antisymmetrizes in x,+x,=4-A4,4 and

— x, = A—AA. The exceptional solutions of Cappelli et
al.? and of Gepner® for m’ = 12 and 18 (E®%,E”) are given as

Z(6,7)~M1 _ RMZ — RM3,
where the arguments x, and x, of M were dropped together
with the subscripts 7, = r, = 0. Finally the exceptional mod-
el E& m' = 30, is given by

Z® _M'!_ RM? - RM® — RM?>.

One can show (see Appendix B) that, for the case where
K is a divisor of m’' (not only of M),

RM* = — RM*™, (30)
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where again M = m’'m. Consequently, in the fundamental
domain one can write the previous (expanded in characters)
partition functions as follows:

ZOM —M", 31)
ZOM' —M" M+ M, (32)
ZODM'—M" M+ MM+ M, (33)
ZOM'—M"—M>+ M —M®

+ M3 — M3+ M, (34)

Using the explicit form of characters’ one can easily
write down the complete partition functions (after multipli-
cation by bilinear combinations of characters) in terms of
the Coulombic (periodic Gaussian) partition functions of
Di Francesco et al.’ defined as a function of the coupling
parameter g,

ZC (g) = _1____. Ak k) qK(khkz), (35)
MHPn(g) v iez
where g = ¢*™, the dimensions A and A are given by
A
K] (kyky) = (k, igkz)z/(4g), (36)

and 77(q) is the Dedekind function (including the conformal
prefactor). The partition functions are

ZW(r)~Ze(m'm) — Ze(m'm), (37)
Z ()~ Z D (5) = Zo(m'm/4) + Ze (m'/4m),
ZOD(r)mZP(7) — Zo(m'm/9) + Z(m'/9m), (38)

Z®(r)~Z©(1) — Z(m'm/25) + Z(m'/25m).

IV. IMPOSITION OF Z, SYMMETRY

Suppose now that a minimal ¢ < 1 CFT has Z, symme-
try as well, where 7 is a prime number (obviously if the CFT
had Z, symmetry with n not prime, then it would also have
Z, symmetry, where p is any of the prime factors of n).

Equations (15) and (21) show that » has to be a prime
factor of M. Write M = K, K,n and use K- K n in Eq. (27).
Then one can see from the condition x,x, = Mt /n mod M,
where ¢ is an integer that only invariants with », =0 and
r, = K,r can contribute, where r =0, 1,....,n — 1. Writing
k,—nk, + s, we get the general form of admissible eigen-
functions of S, contributing to Z *(x,,x,):

n—12K,~1K,—1

‘I’f'(.xl,XZ) =R z 2 (62 K nk, + 1)

s=0 kj=0 k=0

X 8 ktnky + 5y T (r— — 1)) cos (277'2) .
n
(39)
It is tempting to identify r with k and ¥, with Z ¥, based
on the similarity of the phase factors in Egs. (19) and (39).
Then, of course, (19) forces the identification @ = s on us.
In fact, the function

M
NQ (xvxz) = 2 8x,K(nk,+k) 5x2,K,(nk2+Q) (40)

kg ks
has correct modular transformation properties (16). Thisis,
of course, not a surprise, since the extension of the periodic
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Gaussian partition functions to twisted boundary conditions
satisfying (16) is obtained’ if the dimensions A and A of
(36) are substituted by

AQ"‘] _{kn+ Q+glion+ OY @)
&ex| ~ '

4ng
The substitutions g—gn, t,—»t, + n/k,and t,—t,n + Q lead
directly from expressions (27)—(29) to (40).

It is easy to see that identification (40) with the twisted
partition function cannot be correct. Observe only that the
ground state, A = A = 1, corresponding to x, =0, x, =1
appearsinthe Q= 1,k =0and @ =n — 1, k = O sectors of
the K, =1 term (present in all of the modular invariant
models), instead of the Q =0, k =0 sector. This is, of
course, forbidden, since the energy momentum tensor is in
the Verma module of the ground state and it cannot have
nonzero quantum numbers in the Q invariant theory. This
circumstance is related to the Feigin—-Fuchs construction, '°
which implies that because of the presence of charges at in-
finity the Q = O sectors of the Gaussian and ¢ < 1 theories are
different.

One has to use the freedom left in identifying sectors of
given Qand k& for the solution of this apparent contradiction.
Instead of accepting (40) (using appropriate combinations
of K, = 1,2,3,and 5 terms) as the twisted partition function
we can introduce a matrix X of rational (integer) elements
such that

N (x,x) = ¥ X85 N2 (x,x,), (42)
ok
where the matrix X satisfies
Z Xg:/fk, 005(27 M_)
QK n
= 3 cos(2r LEELE )y, (43)
ok n

so that N ¢* would have correct modular transformation
properties (16).

Another constraint on matrix X is (with appropriate
normalization)

X2 =X2k o =mbh,8%, (44)
(where m is an arbitrary integer), ensuring that the ground
state appears in the correct sector. Furthermore, summing
over Q and multiplying by the correct phase factor should
lead to twisted partition functions Z k(x,,x;), which should
be combinations of admissible eigenfunctions (39) of S.
Consequently, the matrix X should also satisfy the equation

>X3% =Ck., (45)
7]

where C §. is independent of Q. Finally, the phase condition
requires that nonzero components of X should satisfy the
constraint

@k =Q'k’ mod n. (46)
Combining (43)-(45) one gets the following sum rule for
Ck.

(47)

n—1 ’
Sy Ck cos(217- —]f—) =m,

k’=0 n
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where m is an integer. Introducing

Dt =ct +c* ., for k'>0,
k __ .k
dg =co,
the sum rule for d §. reads as
(n—1)72

dk. cos(21r —k—) =m. (48)
Zo n
Equation (48) should have (n + 1)/2 independent *“‘solu-
tions,” for k =0,1, ...,(n — 1)/2, so that the (n + 1)/2 in-
dependent twisted partition functions Z* could be con-
structed. The trivial solutiond {,. = m8§,., must correspond
to periodic boundary conditions since it involves integer
spins only (Qk = O mod n).

Notice that one can express

k k :
cos(21r —) =y rz/,
n j=0

where z = cos(27/n) and rer; consequently (48) is an
[(n — 1)/2]th-order algebraic equation for z. For n > 3, z is
an irrational but algebraic number of order (n — 1)/2, its
unique (up to an integer) irreducible polynomial is of order
(n — 1)/2."" As aresult, one can find only one twisted parti-
tion function besides the trivial (periodic boundary condi-
tion) for all n, implying (n — 1)/2<1, n<3. In other words,
one can see on a purely algebraic basis that no Z, symmetry
with # > 3 can berealized ina ¢ < 1 CFT. Note that this result
does not rely on the form of known positive definite partition
functions; consequently it is valid for hitherto undiscovered
¢ <1 CFT’s as well.

Now take one of the CFT’s of (28) and (29) with
M /3eZ. Not all of these theories can support Z, symmetry.
This can be seen, e.g., by considering the Q = 1, k = 1 sector,
in which, as a result of constraint (46), the matrix X is pro-
portional to the identity matrix (except for a trivial mixing
with the charge conjugated, Q = 2, kK =2 sector). Let us
write m' = 6t and m = 3u + v, where t,ueZ, v = 1,2. Tak-
ing n = 3, the appropriate combinations of the 0 = 1, k =1
component of the partition functions (40) are as follows:

(49)

[z (= D)8 2y 283 3020t 20 + 5605 8,7
(50)
for the K, = 1 contribution, and

v+ DR12¢ 12¢
[2(—1) 5:,6a—4v+t6§,—6a+4v+1

+ Z( - 1)v+355,6a—4v+4t5§, —6a+dviar T s<-—>§]6,,;,

(51)
for the K, = 2 contribution. Here s and r are defined as in
(6). The range of summation over « is set by the conditions
4t — 13a>0in (50), 2t — 1>a>0in (51). The signs before
individual terms (controlled by v,5€Z) -are related to the
reduction of s and 3 to the fundamental domain
(1<5,5<6t — 1) by transformations s—12tu + ( —1)"s,
512t + ( — 1), where u,ucZ. After reducing s and 5 to
the fundamental domain, individual terms of sum (50) satis-
fy one of the constraints s+5=4¢, s—5= +4¢, or
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s 4+ § = 8¢. Similarly, individual terms of the sums of (51)
satisfy one of the constraints s+5=2¢ s—5= +2¢,
s+5=10t, s+5=8t s—5= + 4t or s+5=4t. The
terms in which s — 5= + 2f or + 4t are negative. The
K, =1 term is not positive definite for ¢> 1, consequently
the partition function (28) cannot be extended to a Z, invar-
iant model. When the difference of the K, =1 and K, =2
terms is taken, corresponding to the partition function (29),
then for >3 the term of (51) having s + 5= 10¢ has a non-
vanishing contribution, which cannot be compensated for by
any of the other terms in the fundamental domain. On the
other hand, terms of the X, = 1 contribution (50) satisfying
s+ 5= 28t have opposite sign. There are half as many
s + 5 = 8¢ termsin the K, = 2 contribution as well, still leav-
ing uncompensated s + 5 = 8¢ contributions. They are of op-
posite sign to the s + § = 10¢ contribution, giving an indef-
inite partition function.

‘Finally in the t = 2 case (m’ = 12) the projected k = 1,
@ = 1 sector is

28,5656 +8,5055 — 85118535 — 810056, for v=2,
26:,663,2 + 5.9,363,5 - 6:,963,1 = Us6U5100

These expressions are obviously indefinite.

Inthez =1 (m’ = 6) case the matrix X can be uniquely
determined from the constraints (43)-(46) and it gives a
partition function in complete agreement with the results of
Cardy* and Zuber”:

5r,7'(85,15§,1 + 5s,15§,5 )’

for v=1.

for the (k =0, @ =0),

16,760,365,
forthe (0= 1,k=0), (@=2,k=0),
(@=0k=1), (@=0,k=2),
876,365,
for (Q=1,k=1), (@=2,k=2),
8,76,18s3,
for (Q=1,k=2), (Q=2k=1) states.

The last two of these assignments are valid for m = 1 mod 3.
If m = 2 mod 3 they should be switched.

V. CONCLUSION

The classification of a ¢<1 CFT with periodic and
twisted boundary conditions has been performed using mod-
ular properties of the characters of the Virasoro algebra
alone. The most general eigenfunctions of operator S, ex-
changing toroidal boundaries, are of the form

WA,K ~COS(2S7T)NA,-A',
where s = A — A is the spin, A and A are the chiral dimen-
sions of primary fields, and N, x is an integer. All partition
functions with periodic or twisted boundary conditions have
been shown to be related to these eigenfunctions of S.

All the partition functions found by Cardy,'* Cappelli
et al.,”> Gepner,? and Zuber® were recovered. Furthermore,
using algebraic methods, it has been proved that no c<1
minimal CFT may have Z, symmetry groups with » larger
than 3. Imposing the constraint of positiveness on partition
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functions restricts the set of models having Z, symmetry to
those having m’ = 6.

Our methods also lead to a generalization of the con-
struction of Di Francesco et al.’ of a c < 1 CFT with periodic
boundary conditions from periodic Gaussian partition func-
tions. It is shown that in the case of the existence of a Z,
symmetry, the known generalization of Gaussian partition
functions to twisted boundary conditions’ directly leads to
the twisted partition functions in ¢ < 1 theories.
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APPENDIX A: EIGENVECTORS OF OPERATOR S

It follows from (24) that the coefficients c,, of (25)
satisfy the symmetry requirements

Cap =RoCop =Coiap,_b_a-

(A1)
For such ¢, , we could combine (24) and (25) to give

ca,b = Rlca,b = c—a,—b’

.ax
¥ = g; Cap exp[2m 7‘] &Y ,. (A2)
Then (20') implies, after Fourier transforming in x,,
Ce, ~(1+ R+ R D exp[ — Zvix;' ]
X1X;
Xcos(21r 7) N(x1,x,). (A3)

In other words, although ¢, , is not necessarily integer, it can
be written as

M—1

m?, ex {2171‘ l], A4
. b CXP M (A4)

ca,b =
Y=

where m}, ,€Z.
For convenience we relabel eigenfunctions (24) as

v, -, =ex {2m’ x‘xZ]ex [27i g)_cl] &Y.
b +bb p I, p ) O

+ exp[ —2mi %}exp[Z#i %} 6:4+ b,x,

+ (Xx15%3) > (— Xy, — X3). (AS)
Now define the space of admissible eigenfunctions as 6.
Also define the space of (a,b,y) triples, 0<a,b,y<M — 1 as
Q2. Then the support of a Ve is the set SCE of triples
(a,b,y), such that m} , #0.
The support S satisfies the constraints that if (a,b,y)€S
then R,(a,b,y) = ( —a, — b,¥)eS, R,(a,b,y) = (a+2b,
—b—ay)eS, and R,(aby)=(—a—2bn — y)eS.
The last of these statements follow from Im(W¥) = 0.
Scanning all possible initial contributions (a,,b4,7,)€S
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and adding to them other terms (a,b,y)€S tobuild a Vef will
comprise our procedure of building all possible We6.

It will be sufficient to consider minimal extensions of
contributions (a@y,b,,7,) to obtain a Wef. Such a ¥ed exten-
sion will be called minimal if it cannot be written as

W~ g O . @ (A6)

where n",nPeZ, ¥ W¥ef, and where ¥’ and ¥ are
linearly independent and their supports S "’ and S ® satisfy

SWcs, SOCS. (A7)

It is clear that if an extension is nonminimal then one
can find linear combinations of ¥’ and ¥® such that

(1 1 3
Y FOPD L g®,

where ¥, S CS, and (ap,bpY,)eS®. Then, of
course, ¥* would be obtained as the minimal extension of
another contribution (a,,b,,¥,)€S and ¥ need not be consid-
ered.

We order all initial contributions (ag,b,,7,) according
to the divisors of M contained in a,,.

(i) Take first @, = 0 mod M. There is no need to include
other values of a in the extension of this contribution, be-
cause at arbitrary fixed b we obtain

XX i
v ~cos(21r —‘-—2—) S e"mp 6,
M

~cos(21r ";"{‘2) 85, (A8)
(where ¥ had to be chosen to make the overall coefficient
integer) an admissible eigenfunction.

(ii) Next take all a, = 0 mod(M /p), where p is a prime
divisor of M. Then write a = (M /p)k, x, = pk, + r;, and
x, = (M /p)k, + r,. Substituting these expressions into the
general form of ¥ [for simplicity we drop terms symmetriz-
ing in (x;,x;) - ( —x;, —x,)] we obtain the following
equation, expressing the fact that Weg:

i 4 X
¥~e z MypspicsMip+ r, €
ky

+e # z Mirt ok + k)M /p+ 1, €F = 2cos ¢ N(x,,x,),

ky
(A9)
where
k.r r.k
=2 (fl_"z_ Pri1, 21) A10
¢ =2m v T . (A10)
and
rk 7)
=27 |-~ L), All
yeae(thz )

Since on the left-hand side of (A9) k, appears only in
the phase factors ¢, (A9) requires that

4 ix
Z Mirt spiMsp+r, €
ky

= i
_zmkM/P.(k+kq)M/p+rze = N(x,,x,).
ky

In other words, in both sums of the above equation the con-
straint
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Mrk/p—y=0mod M (Al12)

must be satisfied, requiring ¥ =0 mod(Mk /p). Then we
can write ¥y = Mkr/p and (A12) reads as

k(ry —r) =0 mod p. (A13)

Equation (Al3) requires either k=0 modp or
r; — r =0 mod p. The first of these possibilities leads to ei-
genfunctions (A8) (i.e., no new Ye@), while the second re-
quires that m},, be independent of both # and v. Performing
the appropriate summations gives us the invariants
M/K—-12K—1

> 2 Bk nOrsmikan,

ki=0 k=0

Y~ cos(21r 11—x—Z)
M

+ (rpr) = (—r, — 1))+ (x,0X,), (A14)

where we substituted p—K for reasons that will become
clear below.

(iii) In the next step we admit a, =0 mod(M /K),
where K = p,p,, p, and p, are two (possibly identical ) prime
divisors of M, and we seek minimal extensions of these con-
tributions. Following our previous procedure we write
a=(M/K)k, x,=Kk,+r,, and x,=(M/K)k, + r,,
and, after a series of arguments similar to those in (ii), we
obtain the condition for the extension ¥ to satisfy ¥e6:

Mrk/K—y=0 mod M.

Then, of course, ¥y = 0 mod (Mk /K), so writing y = rMk /
K we obtain

k(r—r,) =0 mod pp,. (A15)

Choosing k=0 mod M, k=0 mod(M/p,), or k=0
mod(M /p,), a is restricted to the subsets discussed in (i)
and (ii), i.e., no new invariants are obtained. Then we are left
with the choice of r — r, = 0 mod p,p,. Following the argu-
ments of (ii) we find that the new invariants are of the form
(Al4), where K = p,p,.

(iv) Continuing our procedure in the spirit of (i)—(iii),
taking more and more prime factors of M, we arrive at the
conclusion that the general form of invariants is (Al4),
where K is an arbitrary divisor of M.

APPENDIX B: PROOF OF EQ. (30)
We prove that if X is a divisor of m’ then
RMK(xla-xz) = — RMMK(xpxz), (B1)

where R imposes antisymmetry with respect to the ex-
changes A A4 and A—AA. Here M X(x,,x,) (the sub-
scripts r; = r, = 0 were dropped ) has been defined in (27).

Since 4 = x, + x,, A = x, — x,, we have, on the left-
hand side of (B1),

A=mm'/K)k, + Kk,y, A=m(m'/K)k, —Kk,, (B2)
whereas, on the right-hand side, we have
A= m'/K)t, + mKt,, 1= (m'/K)t,—mKt, (B3)

where the ranges of variables &,, k., t,, and ¢, are from O to
2K~ 1, M /K~ 1,2mK — 1, and m'/K — 1, respectively.
We need to show that when k,, k,, t,, and ¢, run over their
range, the congruences

Ao(m'/K)t, + mKt,) = — (m(m'/K)k, + Kk;) mod 2M,
(B4)
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(m'/K)t, — mKt,=m(m'/K)k, — Kk, mod 2M
are satisfied.
Let us write

Since m and X are relatively prime, ¢, runs over its complete
range mod 2Km, when the range of k, and k; is
0<k | <2K — 1and 0<k,;<m — 1, respectively. Substituting
(BS5) into (B4) we obtain

—m{m'/K)k | + m'ky — mKt,= — m(m'/K)k, — Kk,,

(B6)
m(m'/K)k| + m'ky; — mKt, = m(m'/K)k, — Kk,.
Equation (B6) implies K, = k| and

mt, — (m'/K)k; =k, mod M /K. (B7)

Equation (B7) is satisfied, because when ¢, and &, run over
their respective ranges the left-hand side runs over all possi-
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ble numbers mod M /K, just like the right side, since m and
m'/K are relatively prime.
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It is shown that the transition functions that give the global structure of the fiber bundle play
an important role in the construction of the metric. The invariance properties of this metric
under general gauge transformations are discussed and it is found that the usual requirement of
a gauge-invariant metric leads to severe constraints on the gauge fields. To avoid them, it is
shown that the metric should instead be covariant with respect to these transformations.
Moreover the existence of global actions that are essential in the context of the consistency
problem is also discussed. The presence of such actions is studied in both the principal and
their associated bundles. In the case of a homogeneous bundle with G /H as the typical fiber, it
is shown that a “spliced” bundle with G X N(H)/H as the structure group has to be used. The
unified space is then taken as the bundle space of its associated bundle.

I. INTRODUCTION

Kaluza-Klein theory, when formulated in the frame-
work of fiber bundles, provides an interesting and elegant
way of geometrizing gravity with the other gauge interac-
tions.'~® Indeed, when the bundle space is given a Rieman-
nian structure this approach offers not only a more transpar-
ent interpretation of the Kaluza-Klein Ansirze but also
allows one to ““‘derive” the metric from more basic assump-
tions. The theory, which is Einstein’s theory in (4 + n) di-
mensions, assumes that the extra n-dimensional space com-
pactifies by some dynamical mechanism to a size ( ~107%3
cm) that is unresolvable at current available energies. Un-
like the approach of Refs. 7 and 8, the split between the four-
dimensional space and the compact n-dimensional internal
space is not required to be global. This generalizes the earlier
notion of the (4 + n)-dimensional space being a global cross
product.

The purpose of this paper is to construct a metric that is
compatible with the bundle structure and study the restric-
tions that arise under various assumptions. In the following
section, we will examine some of the assumptions that are
made in constructing the bundle metric. In particular, it will
be shown that the transition functions that define the global
structure of the fiber bundle play an important role in its
construction. Furthermore, we find that they allow the met-
ric on the vertical subspaces to be dependent on the base
manifold, thus introducing Brans-Dicke-like scalars. In
fact, in our construction, these scalar fields can be directly
attributed to the nontriviality of the transition functions. In
Sec. 111 we study the properties of these metrics under gen-
eral gauge transformations. It is shown that the usual re-
quirement of a gauge-invariant metric® is not only unneces-

® On leave from Physics Department, National University of Singapore,
Republic of Singapore.
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sary but also leads to severe constraints on the gauge
potentials. In Sec. IV we turn to the consistency problem.*'2
Here we provide a geometrical basis to the claim that a G-
invariant scheme is consistent. The scheme that essentially
requires the presence of a global action is applied to a homo-
geneous bundle with typical fiber G /H. Unlike the principal
bundle, (P,M,m,G), on which the right action is canonically
given, there is no corresponding action on the associated
bundle (E,M,7;,G/H,G,P). Here the bundle automor-
phisms that are well defined can be used instead. However, if
these actions are assumed to be isometries, then in light of
Sec. 111, they imply vanishing gauge potentials. In order to
resolve this, we construct a bundle associated to a “spliced”
bundle that admits the full isometry group of G/H, i.e.,
G XN(H)/H, as the structure group. This is discussed in
Sec. IV. Subsequently by placing a suitable restriction on the
metric of the typical fiber, we obtain a scheme that is consis-
tent.

{l. BUNDLE METRICS

To begin with, let us recall some requirements needed
when constructing a metric on a bundle space. In Ref. 2,
these are summarized as follows.

(i) The horizontal subspaces of the tangent space to
the bundle must be orthogonal in this metric to the vertical
subspaces.

(ii) The projection of the metric onto the horizontal
space must be isomorphic with the Riemannian metric of the
base manifold.

(iii) The vertical part of the metric must be isomorphic
to some metric of the space tangent to the fiber; i.e., to some
metric on the Lie algebra of the structure group.

Condition (i), essentially, expresses the notion of com-
patibility between the Riemannian structure and the gauge
structure so that the horizontal subspaces defined in both
cases are consistent. Furthermore, it also implies that the
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fibers are Riemannian submanifolds. This results from the
following. If the manifold Pis endowed with a metric tensor
gp and if Q is a submanifold of P then it is also a Riemannian
submanifold if j*g, is the metric tensor on Q. (Here j: QC P
is the inclusion map.) Now, the tensor g, on Q derived in
this way is a metric tensor if and only if the tangent space
T, (Q) is nondegenerate in T, (P) with respect to g, for each
pEQCP. This can only hold if T, (P) is the direct sum of
T,(Q) and T, (Q)", where T,(Q)" denotes the subspace of
T,(P) that is orthogonal to 7, (Q) relative to g,."> When
this is taken together with condition (ii), the map 7: P—» M,
where Pis the bundle space and M the base space of a princi-
pal fiber bundle (P,M,7,G) becomes a Riemannian submer-
sion (as defined in Ref. 13). In general, this assumption
alone does not guarantee the existence of local triviality and,
in some sense, is more general than a fiber bundle when the
latter is also endowed with a metric. Later we will look at a
sufficient condition that will ensure a bundle structure when
starting with a Riemannian submersion. Here, however, we
will regard : P— M as a fiber bundie projection and admit
condition (iii) as an additional assumption.

Using the three conditions above, a metric on
7~ Y(U)CP in a trivialization ¥: 7~ '(U) - U X G, with
Y(p) = (7(p),p(p)), can be written as

81y (VW)
=m*gy (VW) +o*h(V-VW-W), (D

for all vector fields ¥, W defined on 7~ (U). Here g and )
are the metric tensors defined on UC M and G, respectively,
and ¥ denotes the horizontal component of 7. It should also
be stressed that the metric on the vertical subspaces is inde-
pendent of the base manifold since } is characterized by the
coordinates of G alone.

In Ref. 5, the metric (1) is generalized by first assigning
a x-dependent metric on G and then pulling back via ¢,
where @,: 77 ' (x) - G. Essentially, this allows the vertical
part of the full metric to vary from fiber to fiber which, in
turn, introduces Brans—Dicke-like scalars. In the following
it will be shown that this x dependence arises more naturally
when the metric is considered globally.

First, let us consider an open covering {U,}.; of M.
Then, with 7~ (U,) as open subsets of P, U7~ (U,) can
be regarded as an opening covering of Pby identifying points
in the overlap regions 7~ '(U,) N7~ ' (U;). If both M and P
are assumed to be paracompact then their respective cover-
ings are locally finite.'*'> By this we mean that for each point
of the space, there exists a neighborhood that has a non-
empty intersection with only a finite number of U,’s [respec-
tively, 7~ '(U,)’s]. Here we would like to emphasize that
the condition of paracompactness is not an additional re-
quirement since it is implied when one regards a manifold as
a Riemannian space. Indeed, a manifold can be given a prop-
er Riemannian structure if and only if it is paracompact.'*-'
Hence with these conditions, it is possible to find a partition
of unity { f,(p)} subordinate to the covering {7~ '(U,)}.
Since we have already constructed a metric (1) on each open
neighborhood 7~ '(U;), we can extend this to P by taking
the finite sum for each peP,
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8, (VW) =3 fi(p)s(V, W)

= S filpIT*e 0 (VW)
+HPYO X, (V=T W—W)), (2)

where we have used the superscript (7) to label the neighbor-
hood on which the metric is being considered. Now if condi-
tion (ii) above is to be satisfied, then we must use the parti-
tion functions that depend on x alone. In other words we
need only to consider a partition of unity {k,(x)} subordi-
nate to the open covering {U,},; on M since

S k(TP ) =% 3 k (x)g(V, W)

=w*g, (V,W). (3)
Then if we fix a particular @;, Eq. (2) can be rewritten as

ﬁP(V’W) =7T*g1r(p)(V’W) +Zki(x)

X (L¢,'j(x) ¢j)*b¢,j(x)¢j(p) ( V— V;W_ W) y
(4a)

or more generally,
§V W) =m*g(V, W) + ¥ ki(x)

X (L, 20DV = VW — W), (4b)

whereg;: U;,NU, -G are the transition functions. From the
above equation it can be observed that if we want to retain
the x dependence in the metric on the vertical subspaces then
b should not be left invariant. This is because for a left-invar-
iant ), we have

Sk Ly 09 )5V = VW — W)
= k@ IL Y HV = VW — )

=3 kD@ — VW —W)

=V -VW—W), (5)

where the last step follows from the fact that {k, (x)} are the
partition functions and they satisfy X.k,(x) =1, for all
xeM. Itis clear from (5) that it is independent of x. Further-
more, if §) is not left-invariant then this x dependence can
vanish only when the bundle is trivial, since, for trivial bun-
dles one can always construct a global section with ¢, (x)

= Id, VxeM. But this does not mean that one cannot retain
this x dependence for trivial bundles, since a trivialization
with a global section is not the only possible choice.

Now let us consider the case in which the typical fiber is
the homogeneous space G /H instead of G. It is well known
that such a fiber bundle (E,M,r.,G /H,G,P), which is asso-
ciated to (P,M,m,G), can be constructed by taking the quo-
tient of P X G /H by the right action of G which is defined by

(py)g = (pgg~'v), VYpeP, yeG/H, geG. (6)
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It is worth noting that the bundle space E that is character-
ized by the points w = p-y can also be regarded as the base
space of the principal fiber bundle (P,E.u,H), where p:
P E is the bundle projection.™*

In analogy with the metric (4) on P, the metric on Ecan
be written as

e (VW) =18 (VW)
+ 3 kOB he,a (V=YW —W), (D

where @: 7z '(U) - G /H is the trivialization satisfying

‘@’oﬂ = 190¢) (8)
and §); 5 is a metric tensor on G /H. Here g is the trivializa-
tionon Pand ¢ defines the projection ¢: GG /H. Note that
a connection on E can be obtained by projecting the horizon-
tal subspaces of P by the differential map u..

Since E can be regarded as the base space of a principal
bundle (P,E,u,H), it is perhaps interesting to ask whether
the map u: P—E is a Riemannian submersion, when the
metrics on the manifolds P and E are given by (3) and (7),

J

respectively. The answer is in the affirmative, provided the
map J: G— G /H is also a Riemannian submersion. This can
be shown as follows. Since u is a bundle projection, it is
obvious that it is a submersion in the ordinary sense. Now, if
4 is a Riemannian submersion then the metric tensor on G,
which is the bundle space of the principal bundle (G,G/
H,{J,H), can be written as

§6 (X,Y) = 3 *hg, 4 (X,Y)

+ 2 LY lver(X),ver(D),  (9)
J

where 7;: 4 ~ Y(W ) - H is the trivialization; ver (X) denotes
the vertical component of X and {/;(y)} are the partition
functions on G /H. [Here we would like to remark that the
assumption that (G,G /H,J,H) is a principal fiber bundle is
not an additional one. This is because in showing the exis-
tence of local triviality in (P,E,u,H) one has already made
use of this.’*] Then by noting that 7 = 7;°u and using Eq.
(8) we have

8- (VW) =10, (VW) + 3 k()@ 26 (V= VW — W)

= (o) *au (VW) + 3 K, () (999 %06, (V = VW — W)

-+ 2 k; (X)L (»)n;*hplver @ (V — /I>),ver @ (W — ﬁ’))
i

=,U*(77759M(V,W) +2k,(x)7f7}"f)(;/ﬂ(V~ ,IZW‘" ﬁ/))

+ Z k(X)L (y)n;*hylver @a (V — /I>),ver @ (W — i\V))

¥

=u*ge (VW) + z ki(x)lj (}’)ﬂj*bﬁ(ver @ (V- % ),ver @ (W — ﬁ")) s
]

which shows that g is really a Riemannian submersion. It
should be noted that for  to be a Riemannian submersion,
the metric on G /H must be G invariant."?

Now on the homogeneous space (¢ /H we can define a
left action fg: G /H—- G /H, which is given by (g.y)~g'y,
VgeG, yeG /H. Then under the projection ¢: GG /H,
which sends each geG to the coset gH, we have

JoL, =L 09, VgeG, (11)
where L,: GG is a left action on G. From Egs. (8) and
(11) it is easy to verify that the trivializations on 7z '(U;)
and 7 '(U;) are related by

@ (w) =Ly, °; (W), wemy (U Nz (U)),

(12)

where ¢,: U;NU;—G are the transition functions on P. By
replacing @, in Eq. (7) by the above expression it can be
observed that the metric on the vertical subspaces loses its x
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(10)

f

dependence when B, is G invariant. This is analogous to a
left-invariant metric on G in the case of a principal fiber
bundle. Later we will show that the left invariance in §; (or
Ginvariance in b, 4 ), which implies a gauge invariant met-
ric, will also lead to constraints on the gauge fields. However,
before turning to the question of invariance, we will study
the metric on P under more general assumptions.

So far we have constructed a metric on a manifold that
has an underlying fiber bundle structure. As was mentioned
earlier, the first two of the three conditions used in con-
structing the bundle metric imply that the map m: P-Misa
Riemannian submersion. Only the third condition makes an
implicit assumption of local triviality and hence a fiber bun-
dle. It is also instructive to consider the metric by reversing
the assumptions; that is, instead of assuming a fiber bundle
structure from the start, we regard P as a Riemannian space
with a projection 77: P— M that is a Riemannian submersion
and study the restrictions one must make so that 7: P-M
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becomes a fiber bundle projection. A sufficient condition is
given by the following theorem of Hermann.!’

Theorem: If P is complete as a Riemannian space, so is
M. Here 7 is then a locally trivial fiber space. If, in addition,
the fibers of 7 are totally geodesic submanifolds of P, 7is a
fiber bundle with the structure group the Lie group of isome-
tries of the fiber.

Essentially the proof centers on defining a principal
bundle with G, which is a group of isometries of the fiber F
[defined by 7~ '(x,) for some x,eM], as the structure
group. In order to do this one must first show the existence of
local sections and this is provided by the following proposi-
tion (see Proposition 3.3 of Ref. 17).

If all the fibers of 7 are totally geodesic submanifolds of
P, then for each path y: [0,1] — M, the diffeomorphism 4, :
7Y 7(0))-»7" (1)) obtained by mapping each
weem ™ '(7(0)) into the end point of the horizontal lift of ¥ is
an isometry of 7~ !(y(0)) onto 7 {y(1)).

For simplicity, we will regard the fiber £ to be a group
manifold G which makes 7: P— M a principal fiber bundle.
To see what restriction the above assumption imposes on the
bundle metric, we must first introduce a connection on P by
choosing it to be the horizontal subspace as defined by the
metric. This will ensure compatibility between the two struc-
tures. Now, one also encounters mappings between fibers in
relation to connections and these are termed as parallel dis-
placement of fibers [a: 7~ '(¥(0))— 7 '(¥(1))]1." In fact,
under the compatibility requirement, we can identify 4,
with a and since the latter commute with the right action by
G, it is easy to show the fundamental vector fields on Pare h,,
related:

d
h.E*% =h —wextl
&, Y’a’topg,:o

(13)

d
= p h, (wo)exp t&

=&F
hyQwe) *
0

=

Now, if the map 4, is an isometry between the fibers
7 (7(0)) and 7~ '(p(1)), then it follows that for any two
fundamental vector fields & *, 7*,

B, (€ 57*) = B 38 0y (€7 = B,y (7% -
(14)

It is immediately apparent from (14) that the metric on the
vertical subspaces, in the basis of fundamental vector fields,
is independent of the position of the fiber. In other words it is
x independent. Let us relate this result to the metric (4),
which we constructed earlier. First, note that 7: P-»M is a
principal bundle whose structure group is the group of all
isometries of the typical fiber F = G. Since G acts on the left
of F, then it is obvious that the metric on the typical fiber
must be left-invariant. Now, we have already seen from our
earlier discussion that the metric on the fiber loses its x de-
pendence if the metric on the typical fiber is left-invariant.
On this consideration, we can say that both approaches are
compatible. However, the present case is more restrictive as
an additional constraint arises from the requirement of total-
ly geodesic fibers. Indeed, the shape tensor II (Ref. 13) must
vanish as a result, i.e., §(V, W,X) = O for all vertical fields
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V, W, and horizontal field X. Then by using the Koszul equa-
tion,'* we have

which resembles the Killing equation .# ,§ = 0. However,
since Eq. (15) holds only for vertical fields ¥, W and not all
vector fields on P, X is not necessarily a Killing vector field.
To make Eq. (15) more explicit, we can choose X to be the
horizontal lift of d, and the fundamental vector fields

*, & ¥ for the vertical fields ¥ and W, respectively. Thus
withX =e, =3, — A (x)Ad(g~")?€ ¥ in a given triviali-
zation, we have

e 0(EXET) =3,8. — AL (X)Ad(g™)ER(8,) =0,
(16)

which implies that the components of the metric g,
= §(&£,,&, ), besides being x dependent, must also be con-
stant along the fibers.

Before concluding this section, we would like to remark
that the above condition is only a sufficient condition, which
presupposes a left-invariant metric §. This left invariance not
only excludes a x-dependent fiber metric but also, as we shall
see in the following section, constrains the gauge fields. The
nature and severity of these constraints will force us to reexa-
mine the issue of a gauge-invariant metric and also question
its necessity.

. GAUGE-INVARIANT BUNDLE METRICS

It is well known from classical field theory that all the
fundamental equations of classical physics can be obtained
from one mathematical construct called the action. This
functional not only yields the field equations but also charac-
terizes the system through its symmetries. When one talks
about symmetries of the system, it is usually with respect to
this action. Now, when a theory is formulated on a fiber
bundle, it is natural to expect that it be independent of the
gauge choice. In more precise terms, this is tantamount to
choosing an action that is invariant under gauge transforma-
tions. In the context of the Kaluza—Klein theory, this gauge
symmetry can be incorporated into the action by requiring
the metric to be gauge invariant, since it is regarded as the
basic dynamical variable. Here we would like to remark that
this is a sufficient rather than a necessary condition. (In Ref.
5 this is taken as an additional assumption.) This require-
ment, as we will show below, is not only unnecessary but also
disastrous. However, before we do so, let us recall some facts
about gauge transformations.

For practical calculations, one usually works locally by
fixing a gauge or choosing a trivialization {U,,1,}. This
amounts to choosing a coordinate bundle from the class of
coordinate bundles that are equivalent in the sense of Steen-
rod."® A change in the local structure that transforms a coor-
dinate bundle to an equivalent one is generally called a gauge
transformation and can be viewed as a change in the atlas of
the fiber bundle.'® In particular, if we transform from one
coordinate bundle to another bundle, then we can always
find a gauge function a: U— G, such that

p—@' =a(x) ', (17a)
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where both @ and @ ' are defined on 7~ ' (U). (Here we have
kept the same covering for both coordinate bundles.) Fur-
thermore, since

p=o(x)pp) =0 (x)@'(p) =0 (x)a(x) " 'p(p),
the local section o transforms as
(17b)

Now transformations (17) are usually termed as local gauge
transformations and they constitute what is known as the
passive viewpoint. One can also regard gauge transforma-
tions as global automorphisms (active viewpoint) or more
precisely vertical automorphisms of a principal fiber bundle
that are defined as follows.”*?!

A vertical automorphism of a principal fiber bundle 7
P M is a diffeomorphism % : P— Psatisfying the following
conditions:

o(x)-0'(x) =o(x)a(x) .

(i) F(pg)=F%(p)g, VgeG, peP, (18a)

(ii) 7(F (p)) =m(p), VpeP. (18b)
These transformations form a group G4 (P) that is called the
group of gauge transformations and they can be realized by

defining maps 7: P— G, such that

F(p) =pr(p), VpeP. (19a)
In order to satisfy condition (18a), we must require that

T(pg) =g 'r(p)g, VgeG, peP. (19b)

It is easy to verify that the group of gauge transformations
GA(P) is isomorphic to the space of all maps 7: P- G de-
noted by C(P,G).*°

Although the two viewpoints seem notably different, we
can establish the equivalence in the following manner: If two
trivializations ,, ¥ are given over the same covering
U, U; = M, then the diffeomorphisms ¢, , and ¢ ;, are well
defined. [Here @;, is the restriction of ¢, to the fiber
7~ '(x).] Since @, (respectively, @ ;,) is a diffeomorphism
then both @;, (respectively, ¢/, ) and its inverse are con-
tinuously differentiable of at least class C'. We can then de-
fine a composite function given by

(20a)

which is also differentiable and hence a diffeomorphism of
7Y x)>m""(x). It is easy to verify that ¥ defined here
satisfies both conditions (18a) and (18b). Since the function
@, is defined over the region 7~ '(U,), we can extend the
domain of F to =~ '(U,) by writing

(27— —1 ’
F =@ x o¢) ix ?

(20b)

It should be noted, however, that although both @ [ and ¢ |,
are differentiable, only the latter is a diffeomorphism. Then
Z in (20b) is not a diffeomorphism unless we also define its
inverseas F ~'=¢ [ 'op,. Henceforth, we will assume this
and use (20b) instead of (20a).

Conversely if 7 : P— P satisfies (18a) and (18b), then
we can define a coordinate function ¢ | such that

@ l(p) =@(F (p)),
which satisfies (17a). Indeed from (19a) we have

375?’:’,;10‘?;'

2n
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@ (p) = @F (p)) = @, (prio; (X)@: (p)))

= 7(0; (X)) (p) , (22)
from which we can identify a(x) ' with {o;(x)) since
7{o;(x))eG. Essentially, Eq. (21) means that the change in
coordinates produced by an active transformation is the
same as that produced by taking a different trivializa-
tion.'>?2 However, this choice of a new trivialization is not
arbitrary, in that, they must satisfy the condition that the
transition functions remain unchanged:

$;(x) =@ (P)@;(p) ' = p{F PN@F (P)) !
=@, (P)T(P)T(P) g, (p) !

=¢;(x), VxeUNU,. 23)

Furthermore, the functions 7{o; (x)) on different patches are
related by the transition functions as follows: for xeU, N U,
we can write p=o0,(x)p,(p) =0;(x)@;(p) and
(o (x)@; (p)) = m(0; (x)@; (p)). Then using (19b) we have
@ (p)~! 7o () @i (p) = ®;(p) -! mo;(x)) @;(p) from
which it follows that

m(0:(x))p; (x) = ¢;(x)r{o;(x)) . (24)

Now C(P,¥%), which denotes the space of all maps
P— &, canberegarded as the Lie algebra of C(P,G). [Recall
that C(P,G) is isomorphic to GA(P).] It inherits the Lie
algebra of G in the following manner: Define HeC(P,¥ )
such that

H(pg) = Ad(g"")H(p), VpeP, geG, (25a)
[H,H,](p) = [H,(p),H,(p)], VHH,eC(P,Y).
(25b)

Then we find that [ H,H,] is also in C(P, ¥ ).?° Moreover, if
exp: & — G is the exponential map that maps the Lie algebra
¥ into G then there exists a map Exp: C(P,¥ ) - C(P,G),
defined by

(Exp(H))(p) = exp(H(p))eG, VpeP. (26)

It is easy to verify that Exp(H)eC(P,G), which allows us to
regard Exp as the exponential map of the Lie algebra of
GA(P).

Next, let us consider the metric on 7~ '(U) in a given
trivialization [Eq. (1)] and see how it can be made gauge
invariant. It can be noted that under the gauge transforma-
tion @—@'=a(x) '@ the metric transforms as
@n-'(U) (V’W)_’Q;r*'(u) (V,W), where

a1y (VW) R R
=m*gy (VW) +@*h(V-VW—-W)
=780 (VW) + (Lo o@)*5(V = VW — W)
=g, (V,W) + @*L* (V- PW— W),

YV, Wek(r~ (1)), (27)

where ¥(7~ ' (U)) denotes the set of all smooth vector fields
on 7~ '(U). It is obvious from (27) that the metric is gauge
invariant if § is left invariant.
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Under the equivalence between the active and passive
viewpoints, this gauge invariance implies a local isometry,
F:a Y (U) -7 (U) for the metric (4), since

y‘@ﬂ'_'(U) (V’W)

=F*r*g, (V,W) +5"*Zki(x)

i

X@ PV~ VW — W)
= (17 ey (W) + 3 k()
X (9,2 F )V =V, W— W)
=T (VW) + X k()@ *y(V — VW — W),

YV, Wek(r— " (U)).

Here we have made use of Eqgs. (18b) and (21).

To obtain the infinitesimal version of (28) we must
evaluate the Killing vector fields generating .% . In particu-
lar, we need to consider the one-parameter subgroups of the
group of gauge transformations GA(P). Since the group
GA(P) can be realized by the maps 7: P-G [Eq. (19a)],
these can be defined through the assignment r—Exp(¢tH)
with

(28)

d d
— Exp(tH = — exp(tH =H(p) .
J p(tH) (p) o @™ (tH(p)) e (p)
(2%9)
Then the one-parameter subgroup .# , of GA (P) is given by

Z (p) =pr,(p) =p Exp(tH) (p) (30)
or equivalently, using Eqs. (20b) and (22),
F(p) =@ lop’(p) =@ 'or,(0(x))op(p)
=@ ;7 "oExp(tH)(o(x))o@(p) (31)

in the given trivialization. Hence, from the one-parameter
subgroup, the induced Killing vector field can easily be ob-
tained:

rip=L7,m|

t a

=2 S 1oExp(tH)(0(x))o@ (p)
dt t=0

=¢x_'lR¢(p)'H(a(x))’ (32)

where H (o(x)) belongs to the Lie algebra of G. It is immedi-
ately obvious that these Killing vector fields are isomorphic
to the set of right invariant vector fields on G. Since ¥ is an
isometry, it follows that the Lie derivative of the metric ten-
sor (4b) with respect to these Killing vector fields must van-
ish, i.e., (£, #8)(X,Y) =0, VX, YeX(P). In particular by
assigning
X=e,=R,0.d, — A, (x)Ad(g")s&*
=R,.0. 9, ~A45(x)E,,
where £, is a right-invariant vector field on P defined by
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. =¢;‘%exp(t§a)¢,-(p) s (33)

and Y = £ ¥, the Killing equation yields
@([VH’ #],gz) =0 s
since §(e,,£*) =0and [ V"£*] = 0. By noting that

(34)

@re, = @u(Rp0. 3, —AL(X)E,)
=Rp@.0.d, ——Aft(x)qa*g,, = ——AZ(x)q).g‘a

[since poo(x) =e, VxeU] and that [ Ve, ] is vertical it
follows that Eq. (34) reduces to

~ > ki(x)4 . () (L0 @) *B([ Vg, 168 =0,
(35a)
or equivalently,

— A (D8[V"E, )68 =0, (35b)
where A is the potential one-form in the gauge specified by
@;. (Here we have made use of the fact that %.LV”,eu]
= [@pV",pne,].) Since the commutator [V#,£,] does
not vanish and is vertical in general, Eq. (35b) clearly indi-
cates a constraint on the gauge fields. In fact, this is not
surprising at all. Indeed a gauge-invariant metric effectively
requires the metric to be invariant under coordinate
changes, since gauge transformations are really a special
kind of coordinate transformation. Now on this considera-
tion alone one would anticipate some form of constraints
since a metric on any manifold is generally not required to be
invariant but rather covariant with respect to coordinate
changes. This naturally raises the question of its necessity.
Recall that the only reason for requiring it in the first place
was to ensure a gauge-invariant theory but this, as we have
seen, leads to the inadmissible constraint (35). Now, it is
well known that the action

1=fd"+4x\/~g§, (36)
P

where ﬁ is the scalar curvature of the space P, is invariant
under all basis transformations. A viable solution, then,
would be to consider the conditions under which the above
transformations can be regarded as basis transformations. In
the following we will demonstrate that this is possible if the
metric § is right invariant. We would like to remark that this
is a sufficient condition rather than a necessary one. Never-
theless, we will find that it will not only lead to a gauge-
invariant theory, but also prove to be important in the con-
text of the consistency problem as will be discussed in Sec.
Iv.

Since the action (36) is invariant under all basis trans-
formations, it is sufficient to work in a particular basis. For
convenience, we will use the horizontal lift basis, comprised
of {e,} for the horizontal subspaces and the set of right-
invariant vector fields {E‘, (p)} for the vertical subspaces.
Since the horizontal vectors {e,, } are trivialization indepen-
dent, they are unaffected by gauge transformations and we
only need to consider the effect of these changes on the verti-
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cal fields. Now, under a general basis transformation ()
—E&.(p) = AL (p)E, (p) the components of a metric tensor
transform as

85 () =8 (0) = AL (PIAZ (P)Eoa (P) » (37)

where AS (p) are smooth functions. Let us see whether the
components of the metric (4b) can be expressed in this form
under a gauge transformation.

Consider a change in the trivialization @;—@;
= L, ) °@;, Where y; (x) = 7{o; (x)) [see Eq. (22)]. Under
such a change, the components of §, g,, (p) = §(£,.&,) (p)
transform as g,,, (p) — g., (p) with

& (p) = z k;(x) (L¢,-j(x) oLyj(x) °@; )‘b(za’g—b) (»)
' (38a)

[note that ¢, (x) remains unchanged]. Since we are evaluat-
ing the metric at the point peP, we can write

g (D)

= Z ki (x) ((th,»j(x) oLrj(x) °¢j)*f))p(Za (P)’Eb (p))

= z ki (x)bg:(Ltﬁ,} (x)‘L‘yl-(x)'wj‘ Ea (p)’L‘ﬁy(X)'

XLyj(x)‘¢j‘Eb ), (38b)
where g/ =L, ,°L, ., °p;(p)eG. Before proceeding
further, let us evaluate the term Ly,-®» £, (p) explicitly.
Since @n €, (p) = e-(g,(p)) (a right-invariant vector field
on G), we have

Ly/(x)‘ ef(¢j (P))

d
=L, e o exp(#,)@; (p) ‘ e

d _
=5V (x)exp(t£,)y;(x) ™'y, (x)@; (p) LO

= Ad(?’j (x) )thpj(p)’ Y @p* ell;(% »). (39)

Substituting into Eq. (38b), we have
g (p) = 3 ki (x)Ad(y; (x)); Ad(y; (x));

XR ;j(l’) ' @) bg‘f'(e:"el’i ), (40)
whereg” = L, ,°@;(p) and e; = L¢ﬁ(x,.¢,,§c (p). Itis ob-
vious from (40) that if § is right invariant then the metric
transforms as

g (P) = Ad(y; (X)) Ad(¥(x))58.(P) » (41)

which is similar to Eq. (37) with A = Ad{y(x));. If we had
used the fundamental vector fields {£ *} as a basis for the
vertical subspaces instead, then it is not difficult to show that
the transformations are equivalent to a change,

EXP)—E2(P) =Adlg, () 'y, ()@, (DIEX(P) .
(42)

Unlike the previous case, the matrix elements A2 here de-
pend on p as well. To summarize briefly, we have shown that
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the effect of gauge transformations on the metric can be real-
ized as basis transformations if the metric § is right invariant.
In fact with a right-invariant }), the right action R : P— P for
each geG, on the principal bundle, becomes an isometry.
This can be shown by noting that

TR, (p) =m(p), VpeP, geG,
@;°Re (P) = R, op; (p) .

Then we have, for each geG,

RV, W)

=Ry G (VW) + 3 ki(x)
XR g (L0 o, )*h(V — ?/,W— ﬁ/)
=T (VW) + 3 k(%) (Ly ) °9;)*

XRIGV -V W — W)
=§VW). (43)

It is easy to verify that this isometry does not lead to any
constraints.

IV. GLOBAL ACTION AND CONSISTENCY

Having discussed the general setting of the fields in geo-
metric terms, which to some extent summarizes the kinema-
tics of these fields, we now turn to their dynamics. This is
primarily governed by the Lagrangian that not only deter-
mines the field equations via the variational principle but
also restricts the possible field configurations. From the out-
set, one would expect the theory to be mathematically con-
sistent, in the sense that the choice of the fields on which the
assumed theory is built should not lead to any field equations
that are inconsistent. For a realistic theory it is also natural
to require that the theory be compatible with phenomeno-
logical observations at the low-energy limit. In Refs. 9 and
10, it has been shown that the effective low-energy theory,
which is usually obtained by truncating the massive states,
may or may not be consistent. In the context of the Kaluza—
Klein theory, this means that the fields corresponding to the
massless modes, which arise together with the massive ones
in the harmonic expansions, should be consistent with the
higher-dimensional field equations. However, Duff and oth-
ers'! have pointed out that the Kaluza—Klein Ansizze, which
corresponds to the zero modes of the expansions, suffers
from this malady. Indeed, the Ansdtze are generally inconsis-
tent with the (4 + n)-dimensional field equations. To cir-
cumvent this, one has to restrict the fields to those that are
invariant under a group that acts transitively on the internal
manifold. This G-invariant scheme requires the vacuum
state, M, XS, to be a solution of the field equations. (Here
M, and S denote the four-dimensional space-time and inter-
nal manifold, respectively.) In the bundle approach, one can
relax this by requiring the presence of a global isometry that
is also vertical. Here dimensional reduction is achieved
through isometries rather than truncations and, as we will
demonstrate in the following, this will lead to consistent field
equations. In particular, the equations of motion,
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Ryp=2M(n+2)2,5,

which are Einstein’s equations (with a cosmological con-
stant A) will be shown to be independent of the fiber coordi-
nates. .

Essentially, the scheme requires the existence of an ac-
tion that is both global and transitive on the fibers. On the
principal bundle, we have two such actions; the usual right
action by the structure group and the vertical automor-
phisms. In the latter case, we have shown that when these are
regarded as isometries, they impose some severe constraints
on the gauge fields and are thus inadmissible. Let us consider
the right action which, as we have seen, ensures a gauge-
invariant theory.

Now, if the linear connection on P is Riemannian, then
under the isometry R,: P— P, we have'*

for all vector fields X, Y on P. From this it follows that the
curvature tensor defined by R(X,Y)Z=[V,V,]Z
— Vix,vZ transforms as

R.R(X,)Z=R(R.X,R.V)R.Z, VX,Y,ZEX(P).
(45)

It can be noted that if X, Y, and Z are right-invariant vector
fields, then R(X,Y)Z is also a right-invariant field since

R.RXNZ=R(R.XRp NRLZ=R(X,VZ.
(46)

Now if the chosen basis is composed of right-invariant vector
fields [which can always be found on 7~'(U) in a given
trivialization], then the components of the curvature tensor
in this basis are independent of the fiber coordinates. We can
demonstrate this as follows. Consider the basis {X,} with
vector fields that satisfy R,. X, = X,, VgeG. Then because
of right invariance, they commute with the fandamental vec-
tor fields as the latter generate right actions on P. Since
R(X,,Xz) X, is a right-invariant vector field, we have

[6*%R(X,Xp)Xc]=0 47

for any fundamental vector field £ *. In the component form
with R 2,, X, = R(X,,X5) X, this yields

[§*9R gAB(p)XD]

=EXR 2 (M) Xp + R245(p) [£*Xp] =0 (48)
and hence

g*RgAB=O' (49)

This shows that the components are indeed independent of
the fiber coordinates. Similarly, the components of the Ricci
tensor, which are obtained by contracting the indices 4 and
D in (49), are also independent of the fiber coordinates.
Now, let us consider a right action on the associated
bundle (E,M,r;,G /H,G,P). Since a point on E is character-
ized by a representative from a class of elements of the form
(p,y), which are equivalent under the right action defined by
(6), there are two ways in which we can transform a point
from one equivalent class to another. We can achieve this by
either applying geG to peP or yeG /H of the original class.
However, both of these actions are not gauge invariant in the
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sense that they depend on the choice of the class representa-
tive. Thus in general we can say that the action induced by a
right action on P or a left action on G /H is not well defined.

Next let us look at the automorphisms. Here unlike the
above case, a global action on E can be induced in a gauge-

invariant way. Indeed the action .¥: E— E given by
F(w)y=F )y, (50)

where #: P— P and w = p-y, satisfies this criterion. These
automorphisms, which are vertical since

T5(F (W) = 7e(F (p) V) = AF (P)) = 7(p) = w5 (W),
(51)

also form a group that is isomor_phic to GA(P). This can be
shown as follows: If %, and %, are two such automor-
phisms corresponding to % , and .% , on P, then

F 10 F () =F (F,(p)y) = F(F ,(p))y

=J1°?2(p)'y, (52)

where # 0% ,€GA(P). Furthermore, they are transitive on
the fibers of E since the action of 7 that induces . is transi-
tive on the fibers of P. To implement these isometries, the
metric on E has to be restricted. This is clear from our earlier
discussion of gauge-invariant metrics. In analogy with (28),
it is easy to show that the automorphisms .% : E— E become
isometries if the metric (7) is gauge invariant. Indeed from
Egs. (50), (8), and (21) we have

AT (W) =BT (p)y) = 9°9,(F (p))
=do@ [(p) =@ [(w), (53)
from which the above claim follows. Now the metric (7) is
gauge invariant if §;,,, is G invariant since under a gauge

transformation ¢ ¢’ = L,,, @ the corresponding triviali-
zation @ on E transforms as

P(w) -9 ' (w) =@ 'ou(p) =Jd°p '(p)

= 1'90La(x) 0¢(p) = La(x) 0190¢(p)

=L, °P(w), (54)

where we have made use of Eq. (11). From (54) and (7) itis
clear that if the metric b, is G invariant then §, remains
invariant under gauge transformations. As most of the re-
sults here are similar to those obtained earlier for the princi-
pal bundle, it appears likely that the Killing vector fields that
generate . will also lead to the same constraints on the
gauge fields. This is precisely what we obtain, if we follow the
calculations of (34) and (35). It is evident, then, that both
the right actions and the automorphisms on the associated
bundle (E,M,7;,G /H,G,P) fail in one way or another. Nev-
ertheless, we will show in the following section that the prob-
lem of implementing a global action can be resolved by con-
sidering the bundle (EM,7;,G/H,G XN(H)/H,P,°oP,)
instead. This fiber bundle that is associated to the principal
bundle (P,°P,,M,7,G X N(H)/H) [obtained by splicing two
bundles (P,,M,7,,G) and (P,,M,7,,N(H)/H)] allows for
global automorphisms with nonvanishing gauge potentials.
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V. BUNDLE SPLICING

One of the ways in which the fiber bundle approach
differs from the usual formulation is that the gauge poten-
tials are valued in the subalgebra of the full isometry group.
(Here the full isometry group refers to that of the internal
space.) To elaborate further, if the internal space is diffeo-
morphic to a coset manifold G /H, then the full isometry
group that one can have is not G, but rather G X N(H)/H.?
This is because the manifold can be transformed by either a
left multiplication by G or right multiplication by N(H)/H
since both actions are defined. So, essentially, the metric
should incorporate gauge fields belonging to the Lie algebra
of G X N(H)/H. In the bundle approach, however, as we
have seen, one does not obtain this accord. Indeed, the gauge
potentials are valued only in the Lie algebra of G in the case
of the bundle (E,M,n,G /H,G,P).

In this section we will construct a fiber bundle with typi-
cal fiber G /H, which incorporates the full isometry group,
i.e., G X N(H)/H, as the gauge group.

Now, a natural way to introduce the full gauge group is
to “splice” two principal bundles (P,M,7,G,) and
(P,,M,r,,G,) together to form a new principal bundle
(P,°P,,M,m,G, X G,) whose structure group is the direct
product of G, and G,. Formally this can be defined as fol-
lows®: If (P,,M,m,,G,) and (P,,M,r,,G,) are two principal
fiber bundles then the set

PoP, = {(p1,p;)eP, X Py|my(p)) = m2(py) } (5%)

with a right action of G;XG, defined by
(P1,02) (81:82) = (P,81,P28,), can be regarded as the bundle
space of a fiber bundle with base space M = P oP,/
(G, X G,) and structure group G, X G,. Now, the existence
of local trivializations ¢,: 7 '(U) - U X G,, ¢,: m; '(U)
— U X G, on the two principal bundles gives rise to a triviali-
zation ¢f: 7~ ' (U) —» U X (G, X G,) on (P,oP,,M,7,G, X G,)
through

Y(pp2) = (T(p1p2), @(p1p2)), Y (pup)er™'(U),

(56a)

where

@(Pup2) = (@1(p1),@2(Ps)) . (56b)

Associated to this trivialization is a local section o
U- P,oP,, which can be written as

o(x) = (p1,p2) ¢7(P1,P2)_1 = (Pl‘Pl(Pl)_lypﬂ’(Pz)_l)

= (0,(x),0,(x)), (57)
where 0,(x) and g, (x) are the corresponding local sections
on (P,,M,r,G,) and (P,,M,r,,G,), respectively.

Furthermore, the projection 7': P,oP,— P, defined by
7' (p,,p;) = p, can be regarded as the bundle projection of a
principal fiber bundle (P,oP,,P,,7',G,), with a right action
by the group ({e}XG,)~G, and the base manifold
P, = PoP,/({e} X G,). Similarly (P,oP,,P,,7*,G,), where
7*(p,P;) = P, is also a principal fiber bundle.

Now let us construct a fiber bundle that is associated to
this spliced bundle. Recall from Sec. II that in order to do so,
we must first identify the typical fiber and also specify the
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group action on it. In the present case we will take F tobe the
coset manifold G /H with the left actionp: G /H—~ G /H de-
fined as

plabyy=ayb~', VY(ab)eGXN(H)/H, yeG/H;

(58)
it is easy to see that the group G X N(H)/H is transitive on
G /H. Then by observing that the isotropy subgroup at the
origin is

AN = {(n,,n,)eG X N(H)/H |n, = n,}, (59)
we can identify G /Hby the coset (G X N(H)/H)/ANwitha
projection map #: G X N(H)/H - G /H given by

% (a,b)»ab~', VY(a,b)eG XN(H)/H. (60)
From (58) and (60) we also have the relation
d°L,,, =plab)od, V(ab)eG XN(H)/H, (61)

where L, ,, denotes the left action of G X N(H)/H on itself.
With definition (58) we can now construct the associat-
ed bundle as

E = (P°Py) X 6 sy G/H=PoP,/AN . (62)

The vertical automorphisms we discussed earlier can also be
defined here. However, we must first introduce them on the
spliced bundle P,oP,, which we do so by setting

F(pip2) = (F 1(02),F 1(P2)) (63)

where # {: P,— P, and .% ,: P,— P, are the automorphisms
on (P,,M,r,,G) and (P,,M,7,,N(H)/H), respectively. It is
easy to verify that (63) satisfies both requirements, (18a)
and (18b). It follows, then, that the group of gauge transfor-
mations on P,oP, is the direct product of GA(P,) and
GA(P,), i.e,, GA(P,°P,) = GA(P,) X GA(P,). Now con-
sider the automorphisms on E, given by (50), that corre-
spond to the subgroup {GA4(P,) X e}, where e is the identity
of GA(P,). Itis interesting to note that these automorphisms
are also transitive on the fibers. Since we are looking for
isometries with this property, the automorphisms belonging
to the above subgroup appear well suited for the purpose.
Now, it is obvious from our discussion on gauge-invariant
metrics that some restrictions will be required in implement-
ing this isometry. First, let us look at the restrictions re-
quired on the metric b ;. To realize the automorphisms
Z : E-E, we can write, using (8), (22), and (61),

@ (W) =@ ou(p) = dop [ (p)
= 19°La,.(x) °p; (p)
= pla; (x) )o@, (p)

=pla; (x))g; (w) , (64)

where a,(x) = {0, (x)) = (7,(0, (%)), T,(0,,(x))). [Here
7y: P,—G and 7,: P,—N(H)/H are the realizations of the
gauge transformations and o, ; (x), o, ; (x) are the local sec-

tions on (P,,M,7,G) and (P,,M,m,,N(H)/H), respective-
ly.] Then using (53) and (58) we have

BT () = p(1y(0,;, (X)), 7305, (X)) P, (w)

= Z"'l(au(")) oifg(l?z'i(x))"ai (w) . (65)
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If we restrict the automorphisms to the subgroup
{GA(P)) X e} then 7,(0, ; (x)) = e and it becomes clear that
if these automorphisms are to be isometries then the metric
¢ ,» must be invariant under left actions by G or in other
words, it must be G invariant. Note that this is similar to the
case of the associated bundle (E,M,7;,G /H,G,P) we dis-
cussed in the previous section. One may wonder whether
these isometries will still allow an x-dependent metric on the
vertical subspaces since in the earlier case this x dependence
vanished when the metric on the typical fiber was taken to be
left invariant. In the following, we will show that if the met-
ric is not invariant under right actions by N(H)/H then it
can still retain the x dependence. Following (64), we have

@ (w) = p(d" (x),8 (X)), (w)

=L,

8 (=) °R¢'g}z)(x)-|¢j(w) s (66)

where ¢{: U,NU; »G and ¢’ U,NU,~N(H)/H are the
transition functions on (P,,M,7,,G) and (P,,M,7,,N(H)/
H), respectively. Then the metric tensor on the vertical sub-
spaces can be written as

z ki(x)pthe,u = 2 k;(x) (Zd’fj”(x) oR '),—’gjzgoﬁj)*f)c/y

= Zki (x)(R ,gjzi(x) °p;)*b6/,  (67)
where we have assumed that b, ,;, is G invariant. Hence it is
obvious from (67) that R: G/H—G /H should not be an
isometry if x dependence is to be retained. It was also shown
in Sec. I1I that a gauge-invariant metric implies constraints
on the gauge potentials. Since we are now demanding partial
gauge invariance, it is inevitable that some constraints will
arise. However, before considering this let us construct the
horizontal and vertical vector fields on E.

Now if eReX (G) is a left-invariant vector field on G then
its lift &X to G X N(H)/H is given by

, (68a)

) d
e (g1,8:) = E(gl exp 1£,.82)

t=

where £,€T, (G). Similarly the lift of a left-invariant vector
field on N(H)/H is

eX(gug) = -‘%(gl,gz exp t£,) (68b)

[Inthe following the indices a, b,... and @, f3,... will be used to
denote the subspaces 7, (G) and T,(N(H)/H), respective-
ly.] Then from Egs. (68a) and (68b), we can define the
fundamental vector fields on P,°P, by

— 1~

EX(pup) = @ = €@ (p),p2(P2))

=L pexpttap)| (692)
dt 0

t=

§apuD) =@ = 1é5(¢71(p1)9¢72(P2))

(69b)

d
= — , L «
dt(Plpz exp 2§, )

t=0
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Although these vector fields are expressed by using a triviali-
zation @, they are, however, independent of the gauge
choice. This can be verified by choosing a different trivializa-
tiong’ = L, °p-

To construct the horizontal vector fields we must first
define a connection form on the principal bundle. Since both
#' and 7? are bundle projections they are, by definition,
smooth and the connection form @ on (P,oP,,M,7,G
X N(H)/H ) can be introduced canonically through®®

(70)

where w, and w, are the connection forms on (P, ,M,m7,,G)
and (P,,M,m,,N(H)/H ), respectively. Now consider the im-
age of the vector field d, on UCM under the map o’:
U— P,oP, given by

* *
o=m"0+1m™0,,

(71)

where o(x) is the preferred section. Then from (70) we have

o' (x) =R, 4, 00(x),

w(o: d,)
= ("0, + 70} (R4 4,20+ 3,)
=0,(R;.01. 3,) + @,(Ry.0.d,)
= Ad(g 4L ()€, + Ad(gs DA (0)E,
= ("0, + " 0,)(Ad(g )45 (X6}
+ Ad(g; )24 a(x)EH

= o(Ad(g; 245 (x)EF + Ad(g; NEAZ(x)ED),
(72)

where (g,,8,) = @(p1,p,), 4 = 0* v,, and 4 = 0} w,. It fol-
lows that the horizontal lift e, of d, can be expressed as

€, (p1P2) =Ry pye 049, — Ad(%(Pn)")ﬁAZ(x)ﬂ‘

— Ad(@,(p,) AL (x)ER (73a)
or, in terms of the right-invariant vector fields,

€, (P1P2) = Ry pye 0 3, — A (OE, — A5 (0)E,
(73b)

where

Ea (PuP2) =@ = El@ (P )2 (P2))

=¢! 1((exr> £,)@1(p1),@2(p2))
dt t=0
(74a)

and

Ea (Pup2) =@ = "ex (@ (P )2 (Ps))

d
=@ E—(q:,(pl),(exp 1£.)9:(p))
t t=0
(74b)

On E, the corresponding horizontal vector fields are giv-
enbye, = u. e,. Thesecan be evaluated explicitly by noting
that from relations (8) and (60) we have
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pe o (1p2) =P = "0 85@1 (1) 2(P2))

=9~ 'K e:(p)@:2(p) ), (75a)
pe & (P1P2) =P 2 ' D (@1 (P1),@2(P2))
= —% 'K (p)@2p) "), (75b)
and hence
e, =0.0, -4, (x)P K@ (0)@2(p2) ™Y
+A2(0)P 7 Kol ()@ (p) ), (76)

where o: U—E is the local section on E under the map u:
P,oP,— E. Here the gauge potentials are valued in the Lie
algebra of G X N(H)/H.

Now returning to the question of constraints, we know
that they become manifest when one considers the Killing
equation, (fZgE)(X Y) =0, VX,YeX(E). With X =e¢,
Y=wu.£*=K,, and Z = V¥, where

viw) =27, =7z 'K.@w)
dt t=0
is a Killing vector field generating a one-parameter subgroup
of {GA(P,) X e}, the Killing equation yields
§e([VHe,].K,) =0 (78)

By evaluating the commutator (seethe Appendix), Eq. (78)
reduces to

AL () ([VHe 'K, ]1.K,)=0 (79)
which shows that one must set A z (x) to zero if
{GA(P,) X e} is to be implemented as an isometry group.
Essentially, this requires the gauge group to be restricted to

N(H)/H. When we substitute X = K, and ¥ = K, into the
Killing equation we obtain

VH(@E (I_(ayl_(b )) =0

(77

(80)

and this implies that the components of the metric tensor for
the vertical subspaces are independent of the fiber coordi-
nates in the basis {K, }, a = 1,2,...,dim (G /H). Similarly by
choosing X =¢, and Y =¢, [with4 § (x) = 0], the compo-
nents of the metric tensor are also independent of the inter-
nal coordinates. Hence if we choose the vector fields {¢, X, }
[u=1,.,4a=1,.,dim(G/H)] as a basis on E then the
components of the metric in this basis are purely x depen-
dent. It is worth noting that these vector fields are invariant
under the automorphisms that belong to {GA4(P,) X e} and
hence if they evaluate the components of the Ricci tensor,
these, too, will turn out to be independent of the internal
coordinates.

To summarize briefly, we have shown that in defining a
global action that is also an isometry on an associated bun-
dle, the gauge potentials are usually constrained. In particu-
lar, when the fiber bundle is the associated bundle (E,M, 7,
G /H,G,P), in which G acts on the left of G /H, the global
action, which consists of vertical automorphisms, is not an
isometry unless we set all the gauge potentials to zero. This is
clearly unacceptable. To resolve this, we have enlarged the
principal bundle by splicing two principal bundles
(P, ,M,7,G) and (P,,M,m,,N(H)/H). The resulting asso-
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ciated bundle that has G X N(H)/H as its structure group
admits gauge potentials that are valued in the Lie algebra of
this group. However, if we choose {GA(P,) X e} =GA(P,),
which is a subgroup of the full group of gauge transforma-
tions, as the isometry group, then we find that only gauge
potentials that correspond to N(H)/H survive. To imple-
ment this, the metric tensor on G /H is required to be left
invariant. Moreover, if scalar fields are to be included, then
this metric should not be right invariant. In conclusion we
would like to remark that although our gauge group is simi-
lar to the G-invariant scheme of Ref. 6, our model differs in
some aspects. In particular, the isometry group is GA(P,)
instead of G and the structure group is G X N(H)/H rather
than N(H)/H.

APPENDIX: DERIVATION OF EQ. (79)

To obtain Eq. (79) from Eq. (78), we need to evaluate
the Lie bracket [ ¥ *,¢, ). By using the explicit expression
for e,, which is given by (76), we have

[V72.] = [V peRg 55004 9,]
+A (x)[VH,E;IK ]
—AL(x)[VEg 'K, ] . (A1)

Let us evaluate the first term on the right-hand side of (A1).
By using the definition of the Lie bracket, we have

d
[V#u.R (@ngn* = 9 ]=—‘/ —isHsR g g0 3, ’

t=0

(A2)
where .7, is the one-parameter subgroup that induces V.
Then from (65) with 7,(0,;(x)) =e, the one-parameter
subgroup can be denoted by
‘9_7’ = a i,: 1oz'r,_,(al_,(x)] °.¢—7i .
Substituting (A3) into (A2), and using (8), we have

(A3)

[VpeR ;000 ]

d_ _ —

= E P i L,I  nlor 0 PrlsR g o100 _
_4d - A d.@. R o
d — @ ix 71 — nlog ;) * P (81,8)* Y™ i—o

(A4)

By noting that @ commutes with the right action, the bracket
vanishes since g. g. d,, = 0. This is because all the points on
o(x) are mapped to the identity in G by @.

The second bracket in (A1) also vanishes since

VH(w) =i o——l
t=0

dt
d _
= 7¢x l‘Exp(tH)(al X)) ¢ (w) l
—_,d -~ _
=P xe dr LExp(tH)(alv,(x))°¢°ﬂ' (P) _

1 d7F

=P dt LExpuH)(a. ,(x>)°'9°¢(1’)‘ (AS)
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where in arriving at the last step we have used Eq. (8), and
thus

[ Vﬂ’ax_‘ 1Kvm ] = — ?ﬁx_‘ ! [1-9' (eL,O),'ﬁ' (Oye{; )]
= _5;10‘[(e[‘90)y(018{;)]
=0. (A6)

Finally the last term that remains in (A1) does not vanish
since

[V79 'K, ] =P 210 [(50),(e7,0)] #0,

and the result follows.
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The problem of vacuum stability in orbifold compactification is addressed. The spectrum of
fermions and the effective potential in a simple model of compactification on the 7%/Z,
orbifold with a topologically nontrivial gauge field background is calculated.

I. INTRODUCTION

Recently the extra-dimensional physics has become a
standard device in modern particle model building, especial-
ly for the superstring inspired models. In spite of increased
interest in the field, many important questions of a funda-
mental nature remain unanswered, especially those involv-
ing stability of the vacuum, as well as some problems con-
cerning the existence of chiral zero modes and the index
theorem.

A new type of compactification was proposed recently,'
where the compact space is an orbifold. This type of model is
much simpler than that involving compactification on Ca-
labi~Yau manifolds® where metrics are hard to find and
computation of masses and mixings of the physical spectrum
is very complicated®; unfortunately it is difficult to obtain
realistic low energy models using orbifolds. On the other
hand, orbifolds may supply important information about
Calabi-Yau compactification after blowing up the singulari-
ties of the orbifold.! Unfortunately the problems met are still
very complicated so a simplified model for investigating
compactification on manifolds was proposed by Duncan and
Segré.* This model can easily be modified to allow investiga-
tions of the properties of the orbifold compactification. The
simplicity of the original model is retained after the modifi-
cation.

We will look for the spectrum of fermions on the 7%/Z,
orbifold in the presence of a magnetic monopole in the back-
ground. We will also find the one-loop contribution of fer-
mions to the effective potential in the massless case. This will
allow us to find the spin structure that is preferred in the
compactification as a possible vacuum state.

Ii. THE MODEL

We will remind the reader of the basics of the Duncan-
Segré model* and set our conventions, which remain very
close to those of Ref. 4. We start from a model in six dimen-
sions containing a Weyl fermion coupled to a U(1) gauge
field. Two of the dimensions have compactified with the ge-
ometry of & = T*/Z,.

The six-dimensional Lagrangian is*

Lo= — 1 FyyFM¥ 4 i/2(YT™D,, ¥ — D, UT"¥),

(1)
where D, = d,, — ied ,,—the covariant derivative, the met-
ricsignatureis ( — + + + + + ), the Dirac matrices I'™
(M=0,1,2356) are TI*=y*81 (u=0,..3),
I’ = y3er!, ['* = ¥ > @72 where y are the Dirac matrices
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in four dimensions and = are the Pauli matrices. Also,
y3=iy%% 'y and T = °T'T I = y e 7 >, Fer-
mi fields W fulfill the Weyl condition TW = + ¥, and the
directions 5 and 6 are compact, so we set the coordinates
zM = (x*, y"), u =0,1,2,3, i = 1,2. The background gauge
fields may only occur in compact directions since the four-
dimensional space must be Poincaré invariant.

ill. CONSTRUCTION OF THE ORBIFOLD

An orbifold # is formally a quotient of the Euclidean
space R" over a space group S = {(6,¢')} consisting of dis-
crete translations ¢’ and discrete rotations 8 that form the
point group P. The action of § may leave several points
fixed—these points correspond to the singularities of the or-
bifold. The action of the space group can be extended to the
gauge degrees of freedom by embedding the space group in
the gauge group; this way the complete orbifold group is
formed.

We will concentrate on M = R?, and S containing the
A = Z X Z subgroup defining the lattice of the torus with the
lattice translations: g, = ¢*™**, g, = *™*%: wherea, and a,
are two vectors on the plane generating the torus (with
lengths corresponding to the circumferences of the torus)
and P = Z, acting on M by rotations on . The orbifold &
can be alternatively defined by the action of P= S /A on T'?
(P contains a rotation on 7 accompanied by a translation on
a, + a,). Here P has four points fixed on T that in our
parametrization appear at (0,0), (0,a,/2), (a,/2,0), and
{a,/2,a,/2) (see Fig. 1). There is a conical singularity of
deficit angle 7 at each of them.

IV. THE BOUNDARY CONDITIONS

To set fields on & we have to impose not only the stan-
dard torus boundary conditions but also the constraints aris-
ing from identification of the fields at the edge A with that at
A’ and at B with that at B’ (Fig. 1).

For a field ® on & we have

®(4) =R(m)P(4"), (2)
where R(7) is an operator representing a rotation on 7
around one of the fixed points.

If a background gauge field is present then the above
rotation may be accompanied by a gauge transformation ¥,
as well as some other transformation % when additional
symmetries are present,

P(A4) =R(m)FIP(4"). 3)
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FIG. 1. Parametrization of & on the plane. The areas i, ii, iii, and iv parame-
trize T2. To describe & area i is identified with iv, and ii with iii.

This case involves twisted boundary conditions for the field
@ when the point group is embedded in the gauge group. For
physical purposes it is usually required that ® is single val-
ued, which will restrict the set of allowed boundary condi-
tions.

V. THE BACKGROUND GAUGE FIELD
CONFIGURATION

Wewill seta U (1) background gauge field with nonvan-
ishing monopole number on &. In order to achieve this, we
start from the analogous configuration on T2 (Ref. 4) and
impose the condition R(m)4 = A + dA for every singular-
ity.

Using the gauge freedom it is possible to set for the
gauge potential on the ( + + d) coordinate patch on &,

ed <t +9 = (27n/(a,a,/2))y, dy,, 4)

where a, and a, are circumferences of the torus.
The coordinate patches are

(+ +d);(+ +u)y(+ _d)y(+ _u))(_ +d)’
(_ +u)’("" —d)’(_ _u)-

The + — convention is adopted from the description of the
coordinate patches on 72 (Ref. 3):

(+ +): O0<yi<a/2, 0<y,<a,
(+ —): O0<yi<ay/2, O0<p,<a, (5)
(— +): O0<yka/2, 0Ky, <a,,
(— —) O<y<a/2, O<y<a,

while # and d indicate that the coordinate patch contains the
upper or the lower part of the boundary for x;, =0 or
x,=a,/2[i.e.,A'or B'foruand A or B ford (Fig. 1) ].For
instance
(+ +d)0<x, <a,/2, for 0<x, < a,/2;
6
0<x,<a,/2, fora,/2<x, < a,, (6)

It is easy to find the transition functions (gauge transforma-
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tions) required to go from one coordinate patch to the other,
eAC =ed D,

eA(——+uord)=eA(++uord)_dA,

eA(+-—uord)= A(++uord),

(N
eZ(——u ord)=e2(—+u ord),

where A = (2mn/a,)y,, n must be integer for the matter
fields to be single valued.

Since R(m)4d = — A, the boundary condition for the
egl_geA — A'isfulfilled in the ( + + ) and ( + — ) patches
[A(A) = A(A") = 0]. The same is true for the edge B — B’

inthe ( — 4 )and ( — — ) patches. The background gauge
field is
F= (2mn/vol)dy; \dy, (8)

(only the 56 component of the two-dimensional background
gauge potential F is nonvanishing). Since

—LfF=integer=n, &)
2T

Fis twice the one for T2 with the same a, and a, and for the
same monopole number since the volume of # is half the
volume of T'2. The Dirac equation for the ( + + ) patch is

iDMr,,¥ =0, (10)
so that
(iD)*¥ = (—D*—Fygler®)V¥ (11)

(notice that the equation of motion of a scalar field ¢ coupled
to the guage field willbe — D?¢ = 0).

VI. THE SCALAR EIGENMODES

In the compact subspace with the topology of a torus
given by circumferences a, and a, and the background gauge
field with monopole number » we have?

Dh =~ (L2
comp ay% ayz vol 1y -

The solutions of — D2, ¢ = M *¢ fulfilling the periodicity
requirement f{ y,, ¥,) = f( ¥, ¥, + a,) are

(12)

2mim 2|n| m \?
V2 JeXp| ———\ ) —— a4
a, a,a, n

27r|n| m
——a ]},

where H, is the N th Hermite polynomial. The correspond-
ing eigenvalues are

Jam (Vi ¥2) = CXP(

xHN[ (13)

M} = (4n/a,a,) |n|(N +}). (14)
Imposing the boundary condition (for the torus)
#(a,, y;) = exp{(2min/a,) y,)$ (0, y,) (15)
we obtain (see Ref. 4)
a.a 172 — 172 + oo
- [az(l_z) 2~N!] S famrin (16)
2|n| k=~

The above T 2 solutions become valid for & once n is replaced
by 2n and extra boundary conditions are imposed:
ford—A4',
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¢(O9y2) =¢(0’a2_y2)3 (1

and for B— B’,
#(a,/2,y,) = d(a,/2,a, — e,

where A = [27i(2n)/a,] y,.
In so doing the following identities are useful:

Sm (@1 + Y1, ¥2) = expl{27i(2n)/a,] Y3) frm — n (V1s Y2)s
(19)

Jam (Y@ —y2) = (— I)NfM~m( — Y1 Y2)- (20)
This implies the shape of the boundary condition fulfilled by

the eigenfunctions on the torus:
ford—A°,

Sam (0,8, — ) = (— 1)N¢1v,|2n| —m (0, 32),
forB—B’,
Snm (@1/2,0, — y,)

= (= D"yjon - m ( — @1/2, p2)

=(- 1)NCXP([27Ti(2”)/02]J’2)¢N,|2n1—m (a,/2,,)

(18)

2n

(22)
(here 0<m < |2n|).
Thus the eigenfunctions on & are
S (Y1 12) = 1"(\/—2—(¢N,m (yiy2)
+ (=D m (P 32)) (23)
for I<mg|n| — 1, and
$m (Y1:32) = bnm (D1, 12)s 24

for N even and m = O or |n|.

So the states with N odd are degenerated |n| — I times,
and that with N even |n] + 1 times.

We have found simultaneously the spectrum and eigen-
states of a complex scalar field coupled to a U (1) gauge field
on #. If the theory possesses an extra global U(1) guage
symmetry {a phase shift of a complex field ¢), then the
boundary conditions (17) and (18) can be generalized to

¢(09y2) =eia¢(0’az —-J?2), (25)
#(a\/2,y;) = e ¢(a,/2,a, — y,)e?, (26)
but solutions exist for @ = @' = 0and @ = @’ = 7 only (that

is related to two possible ways Z, can be embedded in the
gauge group). The eigenfunctions in the second case are

¢ﬁr;- (Yo3) = 1/\/2(¢N,m(yl’ ¥2)

- (= 1)N¢N,z;n;—m(.V1aYz))’ (27
for i<m<|n| — 1, and for N odd m = 0 or |n| the eigenfunc-
tions are given by (24).

Vil. FERMIONIC FIELD EIGENSTATES

In order to obtain the boundary conditions for fermions
we have to know how R(7) acts on the fermion fields,

R(o™) = exp( — o™V ayn/4), 28)

where @ parametrizes the rotation, o,y = i/2[T,,I'x],

05 =i/2[T5, ] =i/21e[r',7°] = —1®7> so that

R(0°%) = exp(io*®/2 1®73) and
R(my=18ir3orR(3n) = — leir3. (29)
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Writing ¥ = ¢, where ¢, and ¥ are four- and two-compo-
nent spinors, respectively, we obtain an analog of (11) for
fermions:

( —D‘c"omp —F56r3)1//=M2¢. (30)

The solutions are labeled as before, by N,m and also by the
eigenvalue of 7> — A, h = + . For T? the eigenvalues are*

M3y, = (47/a,@)|n|(N + §(1 — ho)), (31)
where o = sgn(n).

The boundary conditions for fermions are

(0, y,) = €“iT *Y(0,a, — y,), (32)

¥(a,/2, y,) = e“e it 3P(a,/2,a, — ;). (33)
Solutions exist fora = a’' = — n/2,

Ymn= + =Pum [Egs. (23) and (24)],

degeneration |n| + ( — 1)%;
Yimn= — =¢%n [Egs. (27) and (24)],
degeneration |n| — ( — 1)%
and for
a=a = +7/2
Yimi= + =9%m [Egs. (27) and (24)],
degeneration |n| — ( — 1)%
Pimn= - =905 [Egs. (23) and (24)],

degeneration [n| + ( — 1)™.

So we have |n| + 1 or |n| — 1 zero modes, and the massive
modes of different helicities combine to form Dirac massive
states, but the result does not agree with the usual form of the
index theorem.

VHI. THE OTHER SPIN STRUCTURES

This way we have found two spin structures on &, but
there are four classes of noncontractible loops on & —every
one of them is associated with singularities. (Our field equa-
tions are well-defined outside the singularities only so the
space we are using has all singular points removed. The solu-
tions are accepted if there exist a limit when the singularity is
approached.) For every curve one can impose two kinds of
the boundary conditions labeled by a phase acquired by the
field after transporting around a singularity (we will mark
these two possibilities by — for phase wor + for phase 0).
The boundary conditions are not independent since a super-
position of four loops, each one going around a separate sin-
gularity, produces a contractible curve so the number of —
boundary conditions must be even—we expect eight distinct
spin structures. Up to now we have obtained only two of
them, but it is well known® that there are four possible spin
structures on T'?, labeled by the phase acquired by the spinor
field after being transported around the circles forming the
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torus: { +,+ }—the one already used, and {+,—1},
{—,+},and { —, — } spin structures.’

The { +, — } spin structure on T'? is obtained after set-
ting

#(ay, y;) = — exp((2min/a,) y,)é(0, y,) (34)

instead of (15).
Then the eigenfunctions become

i =[e <zi“7> |

(fN,m+2kn _fN,m+ 2k + l)n)’

(35)

k= — o

where the functions fare given by (13) and OKm < |n| — 1.
Equations (21) and (22) with ¢* ~ instead of ¢ (that should
be now called #* *) will acquire an extra minus sign on the
rhs. The previous formulas for eigenfunctions on & (23)
and (24) are still valid after the above replacement, this
leads to two spin structures on ¢ corresponding to
a=a =7n/2anda=a = —7/2in (32) and (33) with
the previously described spectra.

For construction of the remaining two spin structures
on T? the functions fin (13) have to be modified to fulfill the
new boundary condition:

f_(,VpO) = _"f_(yl,az)’ (36)

2 1/2
S am (Y1 32) = CXP(“ﬂu)—Y2)

a;
2
Xexp[—-— i"l/yl_

m+1/2) a )2]
n 1

a,a,
1/2
XHN[(Zﬂ'InI) (J’1 _ (m+1/72) 01)] .
(37)
The wave functions for { —, 4+ } and { —, — } boundary

conditions are given by the formulas (16) and (35), respec-
tively, after substitution of /™~ for f. Equations (21) and
(22) are replaced by

¢1;I_m (0,(12 _y2) = $ ( - 1)N¢&:|2n|—m— 1 (O)y2)y
Gam(ar/2,a, — ;) = F (— D)V exp([27i(2n)/a,]y,)

><¢I;,|2n|—m—l(al/21y2)’ (39)

where the upper sign corresponds to { + , — } and the lower
one to { —, — } cases. The scalar eigenfunctions on & for
{—,+ }are (O<m < |n|, any N)

¢1€m_(,V1, y2) = V\ﬁ(‘ﬁﬁ,m(}’v.}’z)

F (- 1)N¢17,2|n|—m—1(J’1’J’2))’ (40)

where the upper sign corresponds to @ = a’ = 0 and the low-
eronetoa = a' = 7. For { —, — } the upper sign should be
exchanged with the lower one. In both cases the degener-
ation of states is |n|. Applying this to fermions goes the same
way as before and leads to |n| chiral zero modes in both
cases, so that the usual index theorem holds, but in the light
of the previous results it is rather an accident.

We shall look at the n = O case for completeness. The
eigenfunctions for T2 are given by

¢n.n2 = exp(2mi(n, y\/a, + n, y,/a,)), (41)

(38)

2656 J. Math. Phys., Vol. 29, No. 12, December 1988

for the { 4+, + } patch, with masses
M?=472%[(n,/a,)?® + (n,/a,)?]. (42)

In order to get the solutions for the other types of the bound-
ary conditions one has to replace n, by n, + 4, n, by n, + 4,
andboth ny,n,by n, + Jandn, + 4for {+,— 1L {—,+1},
and { —, — }, respectively, in (41) and (42). The massless
states are present for { +, + } only. The boundary condi-
tions required to set the fields on & are unchanged [see
(25),(26) and (32),(33)] but now A = 0. The eigenfunc-
tions for { 4+, + } are

.nz 1/\/—(¢n \ny ¢—n‘—-n2)’ (43)

where n,>0, the upper sign corresponds to @ = ¢’ = 0, and
the lower one to @ =a’ = 7. There is a zero mode for
n, = n, = 0 and this implies in the fermionic case the exis-
tence of a chiral zero mode for n,,, =0 with h = + for
a =n/2and with h = — for @ = — 7/2. Degenerations of
the higher excited zeromodes are 1 forn; = 0,n,>0and2in
the remaining cases. The remaining eigenfunctions are

for{+7_} ¢n,n l/ﬁ(¢n,nz$¢—n,,—-nz—l)’
fOf{— ’ + }’ ¢ﬁ|n1 = 1/\/i(¢n,n2 j:¢—n,-—l,—nz)’
for{_’;}’ ¢::n7=l/‘/’i(¢n,nz¢¢—n.——l,—n3——l)'

It is interesting to know which kind of the boundary
conditions is in fact chosen during compactification. It is
probably desirable to have single-valued fermion fields on &
since after blowing up the singularities the loops around
them will become contractible; moreover we are working
then with a common manifold and the index theorem must
hold. Because of that it is probably a good idea to choose the
{4, + } type of the boundary conditions.

IX. ONE-LOOP EFFECTIVE POTENTIAL

Let us look at the one-loop effective potential for various
boundary conditions we have analyzed (we are working here
with the massless case, the massive case involves dealing
with logarithmic divergences that survive the dimensional
regularization and will be considered elsewhere together
with contributions of other fields). From the Appendix we
have

Ve = —4Q2m) ~*£(3) (4rn/vol)?V(n), (44)
where vol = a,a,/2, V(n) depends on the degeneration,

In|+7, dy=n+(—D¥Y
V(n) ={|n|, dy =n,
|n| -7, dy=n—(—1"

The lowest value appears for {+,+}, a=a/2 and
{—,~}, a= — 7/2. For n =0 the result is

Ve =2[1/(a,a))?1[1/(4m) 1773V, (45)
where B = a,/a,, and W(B) = =[(1/B8)n} + Bn}] >,
for V£ﬁ+’_} _ V;[ﬂ_+,+},
V becomes 2(W () — W(28)/8);
for Vgﬂ_—.+} _ V§ﬁ+’+},
¥ becomes 2(W(B) — W(B/2)/8);
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for Vig-—Y— v+,

Vbecomes 2(W(28)/8 + W(B/2)/8 — W(B)/4);

sothe { +, + } case corresponds again to the minimal value
of the effective potential. Unfortunately it is impossible to
distinguish the spin structure uniquely in this way.

X. CONCLUSIONS

We have found the spectra of fermions for all possible
spin structures on & . The effective potential seems to distin-
guish the { 4+, + } spin structure in agreement with the in-
tuition and the requirements imposed by blowing up the sin-
gularities. This procedure inevitably involves a complicated
change of the spin structure. There is more interesting infor-
mation—the usual index theorem is not respected and there
exists a chiral zero mode in spite of the topologically trivial
gauge field background. This may be used to construct a
model with N = 1 supersymmetry (SUSY) in four dimen-
sions® and may have some relevance for constructing Ka-
luza—Klein theories with chiral fermions. The question of
vacuum stability will be addressed more completely in a
forthcoming paper; the case of Yang-Mills and supersym-
metric field theories®’ will be considered there, as well as
divergences appearing in the effective potential and the
counterterms needed to renormalize the theory at the one-
loop level. The possibility of fractional monopole number®
and anomalies will be considered later.
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APPENDIX: CALCULATION OF THE EFFECTIVE
POTENTIAL

The contribution to the one-loop effective potential
from chiral fermions is

Ve = — 4 In det((iD)?).
Introducing dimensional regularization,

d“k
(2m)? ¥

(AD)

@O —— N dy, In(k?+ M3,),
(A2)

=n|+ (=D dy_ =|n|

Ve = —

for {+’+}’ dN+
— (= 1)¥, using

f(‘;ﬂ) In(k24+M?») = — (_;d) (4m7) —4°M*
(A3)
and
3 Nm:;(—_d),
NZ 2
(A4)

M

(— l)NNd/Z = (2(d+2)/2__ 1);( —Zd),

N=1
and the reflection formula
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{(—d/2)= — (/m)(@2m) ~ "
Xsin(wd /4)T (1 +d /2)E(1 +d /2),
(AS)
for d = 4, we have
Ve = —4Q2m)*6(3) (4mn/vol)*([n] +7),
fordy = |n| + (- 1%,
Ve = — 4(2m) ~*¢(3) (4mn/vol)?|n),
(A6)

fOde = Inly
Ve = —42m)~*¢(3) (4mn/vol)?(|n| — T),
fordy =|n] — (= 1™

The n = 0 case is a bit more complicated technically since it
involves Epstein Z, functions,’

Veﬂ‘ =ﬂ_(d_4)(4ﬂ') —d/2r ( _Zd) (217.)d/2

|G+ G T
nony al aZ
where the contributions of both helicities were added, and

the prime denotes omission of the #, = n, = 0 term in the
summation. The sum is conveniently rewritten as

(AT)

n? ds2

(a,a,) =47 z' [—ﬁ—‘f'ﬁni] s (A8)
where 8 = a,/a,. A sum like

z’ [(n1+P)2ﬁ_l+ (n2+q)25]d/2 (A9)

nny

can be represented with use of the Jacobi theta functions,

(G) [ oG 50 (22)

2
Xexp( -5 ——qzxﬂ). (A10)
Then®
(599 [ el 2l
2 b x i’ x Bx
(All)

Changing the integration variables we have

2 0 X i l ﬁ

Using #(1/2i,x) = 24(0,4x) — J(0,x) we are able to pro-
duce formulas for every case considered. For the { +, + }
case we have

vis+r= _ # 7T (3) (a,a,) 2

XJ Q—x(d/“”ﬂ(o,ﬂﬂx)ﬁ(o,lx)
(R 4 B

— 4—1- 7T'(3)(a,a,) 2

-3
X3 -—+/9n2] : (A13)

nn,

Krzysztof Zablocki 2657



'L. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B 261, 678 3C. Vafa, Nucl. Phys. B 273, 592 (1986).

(1985); 274, 285 (1986). SA. Salam and E. Sezgin, Phys. Lett. B 147, 47 (1984).
2P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B ’S. Randjbar-Daemi, A. Salam, and J. Stradhee, Nucl. Phys. B 214, 491
258, 46 (1985). (1983).
3A. Strominger and E. Witten, Commun. Math. Phys. 101, 34} (1985); A. N. S. Manton, Ann, Phys. (NY) 159, 220 (1985).

Strominger, Phys. Rev. Lett. 55, 2547 (1985). °J. Ambjorn and S. Wolfram, Ann. Phys. (NY) 147, 1 (1983).

‘M. J. Duncan and C. G. Segre, Phys. Lett. B 195, 36 (1987).

2658 J. Math. Phys., Vol. 29, No. 12, December 1988 Krzysztof Zablocki 2658



Evaluation of Feynman diagrams in the logarithmic approach to quantum

field theory
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The techniques necessary to compute the O(6%) contributions to the Green’s functions of a
scalar field theory with self-interaction A(¢$%)' * 2 in d-dimensional space-time are developed.
The resulting expressions are evaluated explicitly for d = 1, 0, and some negative even
dimensions. For d = 3 and 4 we calculate their leading behavior in terms of a spatial cutoff a.

I. INTRODUCTION

A new approach to quantum field theory—a perturba-
tion expansion in the powers of the interaction—has recently
been proposed and to some extent developed in Refs. 1 and 2.
To take the specific case of a scalar A¢* theory in d dimen-
sions, the interaction is written as A¢*' +® and & is taken as
the expansion parameter. This is not necessarily a weak-cou-
pling expansion and it therefore falls into the same category
as other nonperturbative techniques, which include the large
N expansion or lattice calculations, that can be used to inves-
tigate problems whose solutions are not accessible via ordi-
nary perturbation theory.

In Refs. 1 and 2 the basic computational rules of the §
expansion were explained. When ¢ is expanded it produces
interaction terms of the form &* (In ¢*)*. The procedure to
evaluate the Green’s functions for such a logarithmic inter-
action is to construct a provisional Lagrangian L, which con-
tains polynomial Lagrangians of arbitrary integer powers ;.
Having evaluated the Green’s functions of L to any given
order K, say, in § one must then continue the expression to
real values of the a; and apply a certain differential operator
Dy to the result in order to obtain the Green’s functions of
the logarithmic Lagrangian. The purpose of the present pa-
per is to develop techniques that will enable us to evaluate
such diagrams through order &° for arbitrary d.

Actually, each two-vertex diagram represents a finite
sum over the number of possible propagators joining the two
vertices. The two tasks that need to be addressed are, first, to
perform the sum to obtain an analytic function of a=«, and
P=a,, which were originally integers, and, second, to apply
to this function the differential operator Dy _ ,. These are
achieved in Sec. II.

The resulting integral expressions cannot be evaluated
in closed form for general dimension d. However, there are
some special cases where this can be done, notably when
d =1, a field theory in one space dimension, namely quan-
tum mechanics, and d = 0, corresponding to the evaluation
of one-dimensional integrals that provided the original im-
petus for the development of the method in Ref. 1. These
cases are evaluated as field theories in Sec. I, where we also
look at the soluble cases of even negative dimensions,
d= —2, —4,. .
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For dimensions d>2 the theory contains infinite quanti-
ties and needs to be regularized as a preliminary to renormal-
ization. In Sec. I'V we propose one such method of regular-
ization and evaluate the asymptotic behavior of the integral
expressions obtained in Sec. II for the two-point and four-
point Green’s functions in dimensions d = 3 and 4. These
results form the basis of the discussion of renormalization in
Ref. 3.

We conclude the paper in Sec. V with a brief discussion
of the results obtained and possibilities for further develop-
ment.

li. EVALUATION OF GREEN’S FUNCTIONS TO ORDER
52

A. Vacuum diagrams

We consider first the calculation of the connected vacu-
um diagrams shown in Fig. 1. There are effectively two dis-
tinct diagrams corresponding to the direct and crossed terms
arising from a double application of the provisional Lagran-
gian'
ZK=2 = %(a¢)2 + %m2¢2 + 6/1Md((¢2M2_ d)a+ 1

. (¢2M2—d)5+ l)

+ 62/1Md((¢2M2—d)a+ i + (¢2M2—d)ﬂ+ 1) i

2.1)
Each diagram represents a finite sum in which the number of
pairs of lines, /, joining the two vertices can vary from 1 to
! .ax - Since an « vertex has a + 1 pairs of lines attached to it,
and similarly for a B vertex, /_,, = a + 1 for Fig. 1(a) and
min(a + 1, 8 + 1) for Fig. 1{b). We will evaluate the dia-
grams in configuration space, taking one vertex at the origin
and the other at x. Then each propagator gives a propagator

(a) (b)

FIG. 1. Two-vertex vacuum diagrams. (a) Direct (aa) contribution. (b)
Crossed (af) contribution.
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factor A(x), while each closed loop, or “petal” gives A(0),a
quantity which will have to be regularized in dimensions

d>2.
The | summation.: Consider first Fig. 1(a). For a given /,
the symmetry factor associated with this diagram is

S‘lla =%(22a+2-—21(21)!((a+ 1 _l)!)2)—1. (2.2)
Thus the contribution to the connected vacuum functional
W[0] is

W 10] = = 8A2M™ [ (B @M 4P +?

a+1 A(x) 2!
2a+ 2 Y St (———) .23
X((2a +2)Y) 1;1 “\3(0) (2.3)

To proceed we first use the duplication formula* on the fac-
tor (21)! = T'(2! + 1) occurring in S/, to write

1 _ 1 ﬁ(a+1) 1
@DWa+1-D! (@+ D! 22\ | /T 4+
(2.4)

Using the reflection formula®* on the remaining factor of 1/
(a + 1 — I)! we can manipulate (2.3) into the form

W, [0] = — Ww8A M P (JA(0) M2~ 9)2ta+D

(TQRa+3)P  sin(wa)
Ta+2)l(a+ ) 7

oS

I=1

><B(l—a—l,a+§),

where z = (A(x)/A(0)).
If we now express the beta function as a one-dimension-
al integral,

(2.5)

1
B(l_a+%)=J dy(l—y)"+1/2y’—“*2, (2.6)
0

the sum over / can be performed:
ad ‘(a +1

2\
=1
The subsequent y integration is expressed in terms of a hy-

pergeometric function*:
1

J dy(l _y)a+1/2y—a—2((1 _yz)a+l _ 1)
0

_ 7 T+
sin(ma) T'(a +2)
X({F(=1—a,—1—a;}z)—1).

)(—yz)’:(l—yz)"*'—l. QN

(2.8)

Upon using the duplication formula for I' (2a + 3) we can
write W, [0] in the final form

W,.[0] = — 1 8242 MHA(0))X2 J.d"x

X(F(—1—a,—1-a}2)—1), (29)
where
X, =2M>°AO)°T(a+3)/TQ3) - (2.10)

Although we have been a little cavalier in our derivation of
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(2.9), treating o sometimes as an integer, sometimes not,
one can check a posteriori that the hypergeometric series in
(2.9) indeed reproduces the original series in (2.3) when  is
integral. In what follows, (2.9) provides an expression con-
tinuable to general a to which we apply the differential oper-
ator Dy _, of Ref. 1.

In a completely parallel fashion the contribution of Fig.
1(b) to the connected vacuum functional of the provisional
Lagrangian is

W,510] = 824 2M2(A(0))* X, X, f d

X(F(—1—a,—1-542)—1). (2.11)

In the derivation of (2.11) one has to assume a definite or-
dering of the integers o and B, but, as can be seen, the final
result is symmetric in @ and £, and completely independent
of that choice.

B. Differentiation

To obtain the Green’s functions of the logarithmic La-
grangian arising from the expansion of exp(§ In(¢*M?*~ %))
one has to apply the operator D to those of the provisional
Lagrangian, as explained in Refs. 1 and 2. As we are working
to second order, the appropriate differential operator is

1 a 1 (92 2
]

2.12
2 \9a B da®> B2 (212)

After the differentiation a and 3 are to be set to zero.

Consider first the evaluation of W, [0]. After the first
term, 2(1 + a)%z, in the expansion of
F(—1—-a,—1—a;};z) — 1all subsequent terms contain
a factor of @ Thus the single derivative picks up a nonzero
contribution from the first term only:

1 d

— —[X3(F—-1)] =25z, 2.13

5 aa[ a( )] Z (2.13)
where

S=14+9@3)+ In2M?>~4A(0)). (2.14)

However, this single derivative term will cancel against the
corresponding terms in Wy [0].

When operating on all but the first term, the action of
the double derivative } d?/da’ is simply to replace the factor
a? by 2, thus generating the infinite series

o k

B(k—1,)—2 .

k=2
By writing the beta function as a one-dimensional integral as
in (2.6) and expanding in partial fractions, this series can be
expressed as

1

%(1 -1 =—z)In(1 —zt) + 2zt ] .
0

The final expression for W, [0] is
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W,.10] = — 1 84 MYA0))

><fa!"x[(2s2 —1+ 1//(-32..))2

1
+ %(1 + 02 [(1 —znIn(1 —zt) + 2t ]} ,
0
(2.15)
with an identical contribution from a diagram where each
vertex is a B vertex. In (2.15) we have omitted the (cancel-
ing) single derivative term. i
The evaluation of W,;[0] is easier. In this case every
term beyond the firstin F( — 1 —a, — 1 — B; 4,z) — 1 con-
tains a factor of af. Since there are no mixed derivatives in
D, all these terms give zero when a and [ are set to zero after
the differentiation. Thus

W.,[0] = 184 ML) f d"x(Sz— 1 +¢’(—;—))z,
(2.16)

again with an identical contribution W, [0]. Altogether,
then (2.15) and (2.16) and their a«»f8 counterparts give

W,[0] = — 8%A2M*4A(0)) f d"x[S2z

1
+f %(1 -2 [(1 = zO)In(1 — zt) + z¢ ]} .
0
(2.17)
To this should be added the contribution of the single-vertex
diagram of Fig.~ 2, which arises from a single application of
thelastterminL, _, [Eq. (2.11)]. Here there is no summa-
tion to be performed and we merely have to apply D to
saMAa@p -4 L2atI
22+ (@ + 2)
giving
W,[0] =1 8Am*A0)((S - 1)2 + ¥' (D)) . (2.18)
Note that in (2.17) and (2.18) the (mass) dimensions of
W10] are correctly given as d. The propagator A(0O) has
dimension d — 2, and in (2.16) the x-space integration has
dimension — d.

C. Two-point and four-point functions

There are three topologically distinct types of diagrams
contributing to the proper two-point functions, or self-ener-
gy part, as shown in Fig. 3. The first, Fig. 3(a), is rather
easily dealt with. Before differentiation the expression is

— MY AOYM? )T (2a + 3)/[2°T(a + )],
which yields
@) = —FAM* (S -1+ ¢),

the same combination as appears in (2.16).
The evaluation of Fig. 3(b) proceeds along very similar

Z

G‘) FIG. 2. Single-vertex vacuum diagram.

(2.19)
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(a) (b) (c)
N7
% A
FIG. 3. Contributions to the proper two-point function. {a) Single-vertex

diagram. (b) and (c¢) Double-vertex diagram. Only the (af) contributions
are shown explicitly.

lines to that of the vacuum diagrams of Fig. 1. Before differ-
entiation the contribution of the mixed aff term is

0% = —2682A°M*A(0) (@ + DB + )X, X,

xfd‘fxe‘?’"‘z”z[F( —a,—pB32) -1},
(2.20)

from which TT{) can be obtained by setting 8 = a and sup-
plying the appropriate minus sign [from Eq. (2.1)].

Infact, itis only fI (and T1$ ) that gives a nonvanish-
ing contribution upon differentiation since each term of
(2.20) contains a factor af8 that cannot be removed by the
unmixed derivatives contained in D. In the case of [ each
term contains a factor a” upon which both derivatives must
act. This generates the series

3

PIEICHE

k=1
which can again be expressed as an integral over an auxiliary
variable ¢ to give

H(b) — 452/1 2M4A(0) fddx eip-le/2

1
xf %(1 — 02 In(1 —z). (221
0

In Fig. 3(c) we encounter for the first time a diagram
that is not symmetric in & and 3, for the reason that the two
vertices are no longer equivalent. Before differentiation we
obtain

M = —282AMA0)(B + DX, X,

xfddX(F(- 1—a, —B;-;—;z) - 1),
(2.22)
as is easily seen by comparison with the vacuum graph of
Fig. 1(b). As usual, the mixed graphs are simpler to differ-
entiate, while the (aa) and (Sf) graphs give rise to an infi-

nite series expressible as an integral over ¢. Altogether the
contribution from Fig. 3(c) and its counterparts is

1
0 45242 °8(0) [as{se + [ &
0

x(l—-t)”z[ln(l—zt)-;-zt]}. (2.23)

The only momentum dependence comes from [1®’ . For
purposes of renormalization® one needs I1(0) and its deriva-
tive dT1(p?)/dp? evaluated at zero momentum. In that case
one can expand e¢”* under the integral as 1 — x%p?/
2d+ ... .
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At this point the general procedure should be clear, and
we merely list the contributions of the four diagrams of Fig. 4
to the proper four-point vertex I',. For simplicity we have
taken all momenta zero, which is all that is needed for renor-
malization. Figures 4(a) and 4(d) do not contain any mo-
mentum dependence. The contributions are

™ = —45°AM?*S/A(0), (2.24)

1
re = — 1252/12M4fddxf (1 —2),
o ¢
(2.25)

1 _ 1/2
re = — 328 2M“fd“x A #d=n"

(2.26)
o 1 —zt

1 a2
I = 86%4 ZM“Jd“x[ _Sz42 ﬂl——’)——] .

[} 11—zt
(2.27)
i1l. EXPLICIT FORMS FOR FINITE THEORIES

In this section we show how the x-space integral in the
expression (2.17) for W,[0] can be explicitly evaluated for
the cases d = 1, corresponding to the ground-state energy of
the anharmonic oscillator in quantum mechanics, and
d =0, corresponding to the evaluation of the one-dimen-
sional integral

J dx exp( — -21- m’x* — AM “x“) .

The integral can also be evaluated in negative even dimen-
sions, d = — 2, —4,... . This is of more than academic in-
terest, since the work of Halliday and co-workers> has shown
that a study of negative dimensions can yield information
about the positive-dimensional case. However, what would
be required is a general formula for negative (even) dimen-
sions, which we have so far been unable to obtain.

A. d=1 (quantum mechanics)

We are concerned with the evaluation of the integral

1

1, =fd"x ‘t—ié(l — 'Y [(1 —zt)n(1 —zt) + 2t ]
0

(3.1)

occurring in (2.17). Similar integrals occur in the expres-
sions for other Green’s functions. Before specializing to

(c) (d)

N\

A

FIG. 4. Contributions to the four-point function. (a) Single-vertex dia-
gram. (b)—(d) Double-vertex diagrams.

17/ \\y

I\
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d = 1 we can convert the x-space integration measure to po-
lar coordinates according to d?x = Q, x? ' dx, where x
now represents the “radial” coordinate and 2, is the solid
angleind dimensions, Q,; = 27972 /T'(d /2).Onintegration
by parts we can rewrite (3.1) as

x? dz

Ia=94f dx =
0

1
dt
— | =1 ="In(1—2z).
ddx.[)t( )7 in(l =2

(3.2)

Recall that z=(A(x)/A(0))%, where A(x), the scalar

propagator in d dimensions, is given by a modified Bessel
function

A(x) = 2m) "4 (x/m)' 9K, _,,,(mx), (3.3)

where m is the shifted mass and m? = u? 4 2AM 2, whichisa
feature of the § expansion.

For d <2, A(0) exists and is given by the limiting form*
of the Bessel function

A(0) = [1/(4m)¢*Im?* P (1 —d /2) . (3.4)
Thus
z=2%(mx)"K,(mx)/T(v))*, 3.5)

where v=1—d /2. For d=1 the Bessel function is
K, /2(mx) = (7/(2mx))"/?e ™, so that
—mx (d=1). (3.6)

z=e
In Eq. (3.2) it is then convenient to charge variables from x
to z and integrate again by parts on z, leading to

1
mil, = -f dt(l—t)”z[%ln(l—t)
0

J" zdz ]
+ (1 — In(z0))| .
o 1 —2zt

After various charges of variables and integrations by parts,
this can be reduced to standard integrals tabulated by Bar-
bieri et al.® and expressible in terms of the Riemann zeta
functions £(2) and £(3), or equivalently #'(3) and ¢" (3):

mlL =203 +3¢ P2+ L9 (3 —2+2In2—}).
(3.8)

The other integral § d“x z occurring in (2.17) can be evalu-
ated for general d <2 as

3.7

mQ, JW dxx?'z= 1 I'2—d/2)
o (474 (m*~“A(0))

To compare with the result obtained in Ref. 1 for the
ground-state energy of the anharmonic oscillator using Ray-
leigh-Schrédinger perturbation theory we set u =0 and
A =1, so that m = M. Then, including the O(8) contribu-
tion,

W 0] =46My(3) — £ °M [24(3) — #*(D)

+¢’(%)1n2+§1//”(§)—4+4ln2] . (3.10)
Equation (3.10) is identical with Eq. (13) of Ref. 1 when
W{0] is identified with AE,,.

The shift in the energy of the first excited state can in
principle be obtained from an evaluation of I1(p?). Work is

in progress on this problem both in the field-theoretic frame-
work and by ordinary perturbation theory.

3.9)
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B. d=0 (one-dimensional integrals)

In Eq. (3.2) the apparent singularity at @ =0 is can-
celed by a zero of Q,, and, in fact, 2,/d—1 as d—-0. Thus

1 1
Io=f dzf ﬂ(l -2 n(1 —2z1),
] o

which becomes

(3.11)

1
1(,=f ti:-(l - [(1—In(1—¢) +1t], (3.12)
0

on performing the z integration. Note that this is the second
integral occurring in Eq. (3.1) evaluated atz = 1. Itis easily
evaluated in terms of ¥'(3), namely,

Li=3¢y(3)—1. (3.13)

Again putting 4 = 0, A =}, m = M = 1, and including the
O(&) contribution, we obtain

W[0] =46y —} 524D +4¥' (D), (3.14)

which are the first two terms in the expansion' of —In Z,
where

-
Z=f ax e T
w7

We can evaluate /; in an alternative way that generalizes
to negative even dimensions. Define

1
F(x)=J %(l—t)”z[(l—zt)ln(l—zt)+zt].
0

(3.15)
Then
I,=Q, J: dx x?~'F(x) . (3.16)
Integrating by parts gives
I, = Pdi[ [x?F(x)1e -—J;w dx x"F’(x)] ) 3.17)

Taking the limit as d—0 from above, the first term in { }
vanishes and we get

1
I, = —-f dx F'(x) = F(0), (3.18)
o

as remarked above (x = O corresponds toz =1).

C. Negative even dimensions d= —-2n

The reason that these dimensions are rather special is
that in such cases the factor {1, has a zero arising from the
polein I'(d /2). Then I, can be evaluated by successive inte-
gration by parts until a denominator d + 2n is produced to
cancel the zero.

For example, near d = — 2, )}, has the behavior
Oy~ —(1/m)(d + 2). Thus

1
I~ -i(d+2)f dx x'F(x) . (3.19)
wT 0

On integrating by parts three times and keeping d > 0 until
the final step one obtains

I_,=(172m)F"(0).
Now

(3.20)

2663 J. Math. Phys., Vol. 29, No. 12, December 1988

F'(x)y= -2 fol %(1 — "2 In(1 —zt) (3.21)
so that
F"(0) = —z"(0) fi’-(l — "2 In(1 -~ 1) + 2(Z(0))?.

° ! (3.22)

Recall from (3.5) that z(x) = y(%)?, where

y(x) = [29%/T (v) ] XK, (%) (3.23)
and X = mx. From the formula*

%(xvxv(fc)) = —HF K, (D), (3.24)

it is readily seen that z’ = 0, for v > 1, i.e., for arbitrary nega-
tive d. Moreover

Z"(0) =2m%/d.
The integral occurring in (3.22) is just — #'(3); thus
I ,= —(2m)ym*y'(3) . (3.25)

For d = — 4 one needs the fourth derivative of F(x)
evaluated at x = 0,

I_,= (1/47*)F“(0) . (3.26)
Introducing the notation
Ydt 12
J(x) = T(l — 0% In(1 —zt) (3.27)
0
and
1 r
sw=[La-nr— _ 1, (328
o ¢ (1 —2zt)"
F%(x) is given by
F(4)(x) — z(4)JL + (4212(3) + 3(211)2)11
+6(2')2"J, +2(2')%, . (3.29)

Greater care is now needed since the integrals J, and J; are
divergent as x -0, like x ! and x 3, respectively. However,
there are sufficient factors of 2’ in front of these integrals to
cancel the singularities, and

F@0) =20)¢' (3) + 6(z" (0)),
inserting the values J (¥ = — ¢/ (3), J{¥ = 2.
In this case, 2" (0) = — } m?, while
290) = 6m*/[d(d + 2)] = 3m*/4.
Thus
I_y= (1/120%) F90) = (M*/167)(¥' (3) +2) . (3.31)

(3.30)

When we go to d = — 6 a further complication arises:
the divergent integrals J i — J {* are no longer individually
tamed by the accompanying factors of z’ and z®. However,
the coefficients are such that the divergences collectively
cancel, with a finite result that again depends on just J; and
J,. The calculation becomes rapidly more involved for
d < — 6, and we are unable to give a general form. As men-
tioned above, a general expression for negative even dimen-
sions may well be equivalent to solving the problem for all
positive dimensions as well.’
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IV. RENORMALIZABLE THEORIES: d=3,4

In dimensions greater than or equal to 2, A(0) does not
exist, and we must regularize the theory prior to renormal-
ization. A Lorentz covariant regularization prescription in
Euclidean configuration space is to impose a short-distance
cutoff g on the radial variable x, equivalent to a momentum-
space cutoff A = 1/a. Then A(0) is replaced by

A(a) = [T(|v|) /4] (ma®) ~ M, 4.1)

where we have used the limiting form of the Bessel function
for small argument. Itsindexis |v| =d /2 — 1, ford>2. Cor-
respondingly, the variable z occurring in the integrals for the
obvious Green’s functions is replaced by

2 2\ |¥| 2
B(x) = (A(") ) = ( 2_(ma )l K. (mx)) . (42)
Aa) l"(lvl)\ 2x

It seems impossible to perform an asymptotic analysis of
the integrals for general d + 2. Instead, each dimension
must be treated separately. We now discuss in turn the cases
d = 3and d = 4. The borderline case d = 2 (|v| = 0) is con-
siderably more difficult {Eq. (4.1) gives a logarithmic rath-
er than power behavior], and is reserved for a future publica-
tion.

A.d=3

The relevant Bessel function in this case is X, ;,, which
has a rather simple form, and (4.2) becomes just’

7= (a2/x2)e-—2mx,
and A(a) reduces to A(a) = 1/(4ma).
Consider first the various contributions to the proper
self-energy part I1(p?). For I1® in Eq. (2.19), we merely
note that S diverges like In(aM).

In the expression for I1‘®) in Eq. (2.23) we encounter
two integrals, the first of which is very easy to evaluate:

(4.3)

I = 48’4 M *A(a)SQ, f dx x4~z

=2042M* L5, (4.4)
m

Contrary to appearances (4.4) does not vanish as g—0. One
must remember that A is the unrenormalized coupling con-
stant, which tends to infinity in such a way* as to ensure that
the renormalized coupling constant is finite. In fact, I1{
represents the dominant® contribution to IT1¢.

To estimate the second integral in (2.23),

157 = 46°A2M *A(a)Q), f dx x*~!

'dt
X 7(1 — 0"V In(1 —2t) + 21, (4.5)

(V]
we first perform a scaling, setting x = y/m. Then we expand
the logarithm and perform the ¢ integration to obtain the
beta-function series

-3 —l—-B(n-— 1,-3—)2",
n=2 n 2
where z = (€2/y%)e ~ %, with € = am. Each term of the se-

2664 J. Math. Phys., Vol. 29, No. 12, December 1988

ries gives a contribution of order € under the y integration,

and
& 1 3
I ~ — 46°A 1M *q? ——————~B( — 1,—) , (4.6
2 ,.gz n(2n —3) " 2 (4.6)

which is suppressed by a power of am relative to [1{®. By

taking partial fractions and rewriting the beta function as an
integral, the » summation in (4.6) can be performed:

1 3
—B(Zn-1
,,;zn (Zn )

' dt 12 1 (3
= — —(1 - i — =] ==
J; t2(1 Nl +n(1—0)=1 5 ¢(2),

(4.7)
= 1 3
B{=n—1
2.3 (2” )
= — l_ﬂ_u_t)l/zln(_l_i_‘ﬁ_;)
o 2t 1—4r
=2Cl#n/2) —1, (4.8)

where C1(8) is the Clausen function,*

6
Cl(g) = —J

0

2
n=1 n

o1 ®, sin n@
ln(Z sin— @ ‘)d@ '= .
5 2
We obtain

I~ — 482 2M“az[4 CUn/2) =3+4¥(3)]- (49

Turning now to IT® in Eq. (2.21), we expand the expo-
nential e~ to second order in p, which is all that is needed
for the renormalization procedure. Under symmetric inte-
gration the linear term vanishes, while (p-x)? is replaced by

2.2
pixd.
The asymptotic behavior of the first term,

M = —48°A°m* J " dx x5
a
1

dt

X —

o 1

is easily evaluated by the same techniques. In this case the

first term of the beta-function series dominates, and we ob-
tain

(A =0'"21n(1 —31), (4.10)

I ~§6°A°M*a* In(am) . (4.11)
In a similar fashion we obtain
5 ~ — £6°A*M *a*p*/m? (4.12)
for the asymptotic behavior of the second term,
e = A sa2m on dx x4+ 'p3!/2
d a
1
X —d—t(l—t)”zln(l-—it). (4.13)

o

The integrals for the four-point function, Eqs. (2.25)-
(2.27), are estimated similarly. Thus

T ~4876%4 2 M *a*/m (4.14)

and
[{® ~ 1387824 M *a® In(am) . (4.15)
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The first integral of ['{?’ is proportional to that evaluat-
edin (4.4),
oo 2
— 88°A2M*SQ, f dx x5 = — 16784 °M*Ls,
a m
(4.16)
and is the dominant term unless canceled by a mass counter-
term from Fig. 4(a). The second integral is proportional to
@,
®© 1 _ 1/2
8824 °M Q)4 J dx x*3? f dr(1—-n"" f)
a 0 1—2:
~3278*A*M @ (Cl(7/2) — 1). (4.17)

B.d=4

Now A(a) is 1/(2ma)?, but z does not have such a sim-
ple form, since the relevant Bessel function is X ;. Its behav-
ior for small argument is K, (y) ~ 1/y, so we write

K@) =U/m£Aa0, (4.18)
so that
2(x) = (&) L) (4.19)

The function f; plays the role that e ~” took for the case
d = 3. Although a much more complicated function, it falls
off exponentially for large y and behaves like*

L =14+002my), (4.20)

for small y, so that £} (0) exists. These properties are suffi-
cient for us to be able to derive the asymptotic forms of the
integrals for I1 and I, using integration by parts as we did for
the exponential.

The first integral in the expression for I1’ is again the
dominant one: it now gives

I1{> = 46’4 2M *A(a)SQ, J dx x°2

~28°A°M*Sa® In(am) , (4.21)
whereas
) ~48%4 2 M *a*Q¥' (3) — 1), (4.22)
using the result
i 1 B’(i A — 1)
n=2MNn— 1 2
1
= — f ﬂ(l—t)”zln(l—t)=\l"(i). (4.23)
o t 2

For the first two terms in the expansion of IT® in powers of
p? we obtain

{®~ — 28°A°M*a*(2 Cl(7/2) — 1 — }¥'(3))

and

(4.24)

MY = }6°A *M*p’a’® In(am) . (4.25)

Turning to the four-point function, the asymptotic forms of

Egs. (2.25) and (2.26) are now
I'® ~ — 48725°A M *a* In(am) (4.26)

and
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[~ — 327°8°A M *a*(2 Cl(/2) — 1). (4.27)

The first integral of I'{" is proportional to that given in
(4.19),

— 85°4°M4SQ, f dx x’2~ — 32776*M *a*S In(am) ,

(4.28)
and finally the last integral is
o 1 — 1/2
8624 2M 40, f dx X7 f ad-n"
a 0 1—2:
~478 A M 4a* V' (3) . (4.29)

V. DISCUSSION

In the preceding sections we have shown how to sum
and differentiate the Feynman diagrams arising in the § ex-
pansion and to evaluate them for certain dimensions d <2,
where no regularization is required. For d = 3,4 we intro-
duced a short-distance cutoff ¢ and identified the leading
contributions as @ — 0. Points that remain for further investi-
gation are the borderline case d = 2, the search for general
expressions for d = — 2m, and an incorporation of the full
momentum dependence e” *. Extension of the field theory
expansion to O(&°) is a very difficult task.

In view of the strong indications of triviality of A(¢*),,
reinforced by the application of the above results in Ref. 3,
this paper should be regarded as a laying the groundwork for
future developments in tackling more realistic, nontrivial
four-dimensional theories. Some initial progress® has been
made in that direction in the context of models of Nambu-
Jona-Lasinio'® type. The ultimate aim must, of course, be to
incorporate gauge fields.

The numerical accuracy of the § expansion has been
shown? to be very good in d = 0 in the massless case, u = 0.
The same is true'" for massive theories, with both 4> > 0 and
u? <0. This gives one hope that the & expansion may be used
to give meaningful information about such nonperturbative
phenomena as phase transitions, confinement, and sponta-
neous symmetry breaking.
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With the purpose of clarifying some aspects of the complete integrability of nonlinear field

equations, a singular-point analysis is performed of the Davey—Stewartson system, which can
be considered as an extension in 2 + 1 dimensions of the nonlinear Schrédinger equation. It is
found that the system under consideration possesses the Painlevé property and allows a set of
Bicklund transformations obtained by truncating the series expansions of the solutions about

the singularity manifold.

I. INTRODUCTION

The search for possible connections among different ap-
proaches to nonlinear field equations (NFE) may help to
clarify some aspects concerning the complete integrability of
the equations under consideration.

For NFE in 1 + 1 dimensions, encouraging results in
this direction have been achieved recently in Refs. 1-3. Pre-
cisely, the authors of Ref. 1 find a link between the Bicklund
transformations of certain NFE derived from the Weiss—
Tabor—Carnevale (WTC) Painlevé analysis,* and those ob-
tained by Hirota’s technique.>® In Ref. 2, the role of the
Estabrook—Wahlquist (EW) prolongation scheme® is exam-
ined in terms of the WTC procedure. In Ref. 3, it is shown
that symmetries and recurrence operators for NFE can be
obtained by the Painlevé expansion.

Following the above-mentioned line of reasoning, one
could carry out a singular-point analysis in the more general
case of NFE in 2 + 1 dimensions, keeping in mind the pro-
gram of establishing a possible connection between the Pain-
levé property* and Hirota’s method. According to this order
of ideas, in this paper we study the Davey—Stewartson (DS)
system'?

iQ, + N(Qu + Q) = —0lQ’Q+q0,
qx-" _q}’y =20(|Q|2)xx’

(1.1a)
(1.1b)

where Q = Q(x,3,1), ¢ = g(x,y,t}, 0 = + 1, and subscripts
denote partial derivatives.

Equations (1.1) are of physical interest, since they de-
scribe the propagation of two-dimensional water waves of
finite depth. The DS equations were studied in different
theoretical frameworks. For example, the initial value prob-
lem associated with them, was linearized by Fokas and
Ablowitz,'! while Champagne and Winternitz,'? by means
of a symmetry reduction technique, discovered that Egs.
(1.1) possess a loop algebra structure.

In Sec. II a set of Backlund transformations for Egs.
(1.1) are determined by applying a singular-point analysis.
In this context, some propositions are also proved concern-
ing the invariance property of certain relations under the
Mobius group. In Sec. III a bilinear formulation of the DS
system is used to give an N-soliton solution. Finally, Sec. IV

2666 J. Math. Phys. 29 (12), December 1988

0022-2488/88/122666-06$02.50

contains some conclusions, while in the Appendix details of
the calculation are reported.

li. BACKLUND TRANSFORMATIONS VIA THE
SINGULAR-POINT ANALYSIS

Informally, one says that a partial differential equation
possesses the Painlevé property when its solutions are single-
valued about the movable singularity manifold.* The reader
interested in formal mathematical preliminaries is referred
to the wide bibliography quoted, for example, in Refs. 1 and
4.

In order to perform the Painlevé analysis of Egs. (1.1),
it is convenient to start from the system

1Q, +4(Qux + Q) = —0Q°R + 40, (2.12)
iR, — (R, +R,,) =0oR?Q— gR, (2.1b)
Gxx qyy = ZU(QR)xx’ (210)

which coincides with (1.1) when R = R(xy,t)=Q*.

Now we make the ansatz that the variables Q, R, and ¢
can be expanded about the singularity manifold ¢ (x,y,t) =0
as

Q=g kgo upd*, (2.2a)

R=¢%Y w." (2.2b)
k=0

g=¢" kz V4", (2.2¢)
=0

where ¢ = d(x,p,1), u, = u, (x,p,t), w, = w, (x,p,1), and
U = U (x,p,) are analytic functions in a neighborhood of
¢ =0, and a, B, and y are integers.

Inserting (2.2) in Eqgs. (2.1), a leading-order analysis
uniquely provides @ = = — 1and y = — 2. Consequent-
ly, Egs. (2.1) yield the recursion relations
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[1(% + #2) (k — 1) (k — 2) + 20uow, — v ] Uy + OUGW, — tgby
= =i (k—=Duy_y —iuy_,,— 1P +¢yy)(k —2up_y —(k— 2)(¢xuk—1,x + ¢yuk—1,y)

k—1 k—1

— MUy _px T UL_2y) — O z "ww_ G + z UVi_ (2.3a)
M=o =

[1(% + #2) (k — 1) (k — 2) + 20wouy — v Jwy, + oW u; — wovy
=i (k—2)w_ | +iwe_o, —due +6,,)(k—~w, | —(k—=2) (b wi 1, + Wi _1,)

=Wy _gx F W _2,,) — 0O z "winwi_ Gy +
if=o

k—1 k—1
Wy _ (2.3b)
1

j=

(B2 — #2) (k —2) (k — 3)v, — 208% (k — 2) (k — 3) (o, + uowy)
= (¢yy - ¢xx)(k - 3)vk—l - Z(k— 3)(¢ka—l,x - ¢yvk— l.y) - (vk—Z,xx - vk—Z,yy)

k—1 k—1
+ 20'[¢,2¢(k —-3) Z (j— 1)(ujwk—j + wiuy ;) + 2¢, (k—3) z (jwy _ 1 + Wity —_jx)
i j=2 j=0
k—1 . l k—2
+ brx Z (J—D(wuy_y_j +wwe_y_y) +? Z (W _o_j+wwe_5_;)u | > (2.3c)
j=o j=o
|
where the indexes j,/ in the summation X' are such that = —20[ 26, (uoWy) x + Px Uty
0<j+ Ikk. 2
— . 2.7
Now we observe that Egs. (2.3) can be considered as an B (wotts + ugton) | (2.7¢)
inhomogeneous system in the unknowns u, , w, , and v, . The
determinant D of the coefficients of such a system, namely, Fork =2,

2
(Vg — 20ugw,y) Uy — oUGW, + U,

— (A2 2 (42 2
D =1¢x—4,)(¢: +4)) = itg, + §(Uoex + Ugy,) + 20u,w,u,

Xk(k—2)(k—3)2(k—4)(k+ 1), (24)

vanishes for

+ ot wy — uyy, (2.8a)

2
— owi, + (Vg — 20uglwy) + Wb,

= — Wy, + 4 (Worx + Wy, ) + 20w,u,W,

k= — 190’293’3:4’ (2.5) =+ a'w%uo — Wy, (2'8b)
which are therefore the resonances of the recursion relations =20 V1c — PV + Voxx + 28,01, + 8,0, — Vg,
(2.3), i.e., those values of k£ that correspond to points where =207 (4glWp) v — 26, (UgWy, + Wtk ) — 26, (Wo, 1,
a.rbltrary functions of (x,y,t) are introduced into the expan- s )) — B (wotty + Ug0y) | - (2.80)
sions (2.2).

For k = 0,1,2,3,4, Eqs. (2.3) give rise to the following Fork = 3
constraints. ’

For k=0, (0 — 20ugwy — B2 — §2)uy — oujw; + ugy,

=id,u x u Uy
$: + 85 = — ougwg + vy, (2.6a) Pty +1(Bex + ¢,) 02 + futhnn + 1,
+ 2(7(1‘01'01 -+ ulwo)uz + 20‘uou1w2 — Uy,
($2 — 620y = 2062 ugw,, (2.6b) + [ty + Y + t11y,) + 082w, — uwy],
2.9
Fork=1, (2.9a)

i¢tu0 + %(¢xx + ¢yy)u0 + ¢xu0x + ¢yu0y

— owhus + (Vy — 20uUgwy — P — ¢§)w3 + Wovs
= _i¢tw2 + %(¢xx + ¢yy)w2 + ¢xw2x +¢yw2y

— 2 — —
= 0(Qugols; + UGW,) — Ul — U Vg, (2.7a) + 20 (Wolty + W,Uo) Wy + 20W0, 4, — Wb,
- i¢tw0 + '21(¢xx + ¢yy)w0 + ¢xw0x + ¢yw0y + [ - iwlt + %(wlxx + wlyy)
2
= 02wy, + Wit,) — Wwevy — W, (2.7b) +owiu, —w,], (2.9b)

(82— 20, ~ 2Buvo, — by00,) — (B — 8,0 ixe = Viyy = 20y + Wolhy) e (2.90)
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For k=4,

- 2i¢tu3 - iult - (¢xx + ¢yy )u3 - 2¢xu3x - 2¢yu3y - 12“(uZxx + uZyy) - 0[2(u0wl + wOul)u3 + 2uoull‘u3

+ 2uglaW, + 2y Wy, + U W, + Wolt3 | + Uy0s + usls + Uty = [3(PE + 1) + 20ugw, — vo Uy + oUW, — ugv,

(2.10a)

2w, + iw,, — (P + ¢yy)w3 — 24, w5, — 2¢yw3y — W Wayy + Wy, ) — o[2(uw, + wout,) ws + 2wew, 3

+ 2wowstt; + 2w w, + Wi, + U3 | + wyos + wov, + Wity = [3(4E + ¢2) + 20ugw, — vo | Wy + oW u, — Wols,

(2.10b)

(Pex — ¢yy)v3 + 2(f, 03, — ¢yU3y) + Vyux — Vg — 40[¢i (4w, + Uzw; + W) + @, (UgWs, + U Wy, + Uy, + UsWg,

+ Wolly, + Wity + Woll, + Willo, ) + 3G, (Wt + w0y + Witk + u3wp) | — 20[ (Wolky + Wathy) xx + (W) 1, ]

= 20(Wolglty + UgUW,4 — Uglgls).

From Egs. (2.6) we find
uowo = (2 — 42), (2.11a)
vo =247, (2.11b)

where the quantities ¢2 + @2 and ¢2 — ¢ are taken differ-
ent from zero.
After some manipulations, Egs. (2.7) yield

uy=[1/(8% + ¢2) ] [ — id,to + 3uo($ux + ¢,,)
— @ o — P, ], (2.12a)
wy = [1/(#% + #2) ] [id,wo + Jwo(dsx + &)

— @, Wo, — bWy, ], (2.12b)

v = — 28, (2.12¢)
and

U, + U o = o (@, — P )- (2.13)

On the other hand, we notice that (2.8c) is identically
satisfied, while from (2.8a) and (2.8b) we obtain

v, = (1/8) [ (v — 20uewy)A + ouiB |

— (uy/uy) (vg — ougw,), (2.14a)

w, = (1/A) (ugB — Aw,) + (uy/tip)wy, (2.14b)
where u, is arbitrary, and

A=uy(43 +4)), (2.15)
A =iuy, + L(ug,, + ugy,) + 20u,uw,

+ owyu? — uyp, (2.16)
B = — jwy, + 3wy, + Woy,) + 20u,w, W,

+ qugwi — w,,. (2.17)

Exploring Egs. (2.9), we infer that (2.9c) is identically
satisfied, while the arbitrary choice of the three functions u,
w;, and v; implies the compatibility condition

woH = uk, (2.18)
where H and K are expressed by the right-hand sides of
(2.9a) and (2.9b), respectively.

Condition (2.18) entails
vy =H /uy + o(wou; + ugws), (2.19)

where u; and w, are arbitrary functions.
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(2.10c)

Finally, concerning the resonance occurring for k = 4,
we notice that Eqs. (2.10) lead to the compatibility condi-
tion

Fwy + Guy = oE, (2.20)

where F, G, and E are the left-hand sides of (2.10a), (2.10b),
and (2.10c).

We have checked that the relations (2.18) and (2.20),
corresponding, respectively, to the resonances k = 3 and
k = 4, are identically satisfied. From the above consider-
ations we deduce that the DS system has the Painlevé prop-
erty.

At this point, we are ready to show that the expansions
(2.2) can be truncated to yield a Bicklund transformation
for the DS system (1.1). In doing so, let us assume
u, = uy = w; = u, = 0 and impose that w, = 0, and

(ulswpvz)esy (2.21)
where § is the manifold of the solutions of Egs. (2.1), i.e.,

iuy, + 3y, +uy,,) +outw, —uw, =0,  (2.22a)
iwy, — 3wy, + wy,,) —owlu, +ww,=0, (2.22b)
Vanx — Uy = 20 (0 W) - (2.22¢c)
Then we obtain H=F=G=E=0, so that v,

=v,=w,=0,and
vZ = (1/u0) [iu()t + %(uO)cx + uOyy) + u1(¢xx + ¢yy)

+ ouuqw,]. (2.23)
Keeping in mind Egs. (2.3), one easily finds
u, = w; = v, = 0for all values of k greater than 4. To con-
clude, we have the following proposition.

Proposition 2.1: The DS system (1.1) possesses the
Bicklund transformation

Q = ul + u0/¢, (2.243)
v, a’
q=u2+;‘+¢—g=v2—2b?ln¢, (2.24b)

where (u,,0,)€S, u,, Uy, and v, are given by (2.11a) (with
w, = u¥), (2.11b), and (2.12c), respectively,'® and ¢ satis-
fies the equation
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Ug[itty, + 3y + t0yy,) ] = 1y [ i, + §(toyx + Uoy,)

+ ougu, (u¥ +u) —u,],
(2.25)
where u, is expressed by (2.12a).

Equation (2.25) is obtained combining (2.8a) (with
u,=w, =0 and w, = u§, w, = u¥) with (2.22a) (where
w; = ut).

Other results coming from the singular-point analysis of
Egs. (1.1) are stated in the following proposition.

Proposition 2.2: Equation (2.25) is invariant under the
MGdbius group, in the sense that if ¢ obeys Eq. (2.25), then so
does ¥, expressed by

Y= (ad + b)/(cd +d), ad— bc#0. (2.26)
This invariant property arises straightforwardly using the
constraints (2.7a), (2.11b), (2.12¢), and (2.12a).

By a direct calculation we also have the following prop-
osition.

Proposition 2.3: Let (u,,v,) be a pair of solutions of Egs.
(2.22) (with w; = u}), where

u,=u,[d] = uy| — i¢i ¢+ 7 + 222——%)] ,  (2.27a)
v, =0,[6] = (1/u,) [iuoz + §(ugn, + uOyy)
+ oup2uy* + 43) +2ud, ], (227b)
and
ug=[o(gZ —#3)]1"% (2.28)

If we demand that Egs. (2.22) be invariant under the M-
bius transformation (2.26), then also the pair #,=u,[¢],
b, =v,[ ] fulfills Egs. (2.22), where

ﬁ] = U, + uo/(¢ +A),
§2=v2_232/ax2 ll’l(¢+/1),

and A = d /c is an arbitrary constant.

We notice that Eqgs. (2.29) reduce to the Béicklund
transformations (2.24) for A = 0. Thus the requirement of
invariance of the DS system under the Mébius group repre-
sents a simple way of introducing a free parameter into the
Bicklund transformations themselves. This is the starting
point for trying to build up, in the WTC context, a spectral
problem for the given equations.'*

(2.29a)
(2.29b)

Ill. BILINEAR FORMULATION AND A-SOLITON
SOLUTIONS

The Bicklund transformations (2.24) derived by the
Painlevé analysis of Egs. (1.1) suggest the way of writing

Eqs. (1.1) in the Hirota’s bilinear form.>3 To this aim, let us
set

Q=g/f, g=h/f? (3.1
where f=f*, and
Igl’—rffz(ay2 g )l f
=—;-0(Di —D2)Ff, (3.2a)
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h= —2f2—1nf —DLff

Inserting the quantities (3.1) in Egs. (1.1), we find that
Eq. (1.1b) is identically satisfied, while Eq. (1.1a) becomes

(3.2b)

[iD, + 4D + D})]gf=0, (33)
where the operators D are defined by
D D7D g(xy,0) -f (x.,0)
a aN(a a\N“(ad a\"
(-2 G362
Xgeyp) SN (3.4)

Equations (3.3) and (3.2a) can be used to find exact N-
soliton solutions of the DS system (1.1).'* Following Hiro-
ta’s formalism,'® for the reader’s convenience in the Appen-
dix we have checked that Egs. (1.1) possess the
N-envelope-soliton solution

P 82
Q=4Aexpli61(g/f), g= — a — I/ (3.5)
with
(1) 2N (2N)
g= Y e 2 vimi + Y v,v,q:(t,j)} (3.6a)
v=0,1 i<j
) (2N)
f= xp[y, pn+ S map|. (G6b)
u=01 i<]
where
6=rkx+1ly—ot, (3.7)
7 =Kix + Ly — Qt — 15, (3.8)
—i(Q, + i) + (K, + ik)* + (L, +iD?* =0, (3.9)
fori=1,2,..,2N,
Nirn= 1’1*’ fori= 1,2,'")M
expl@(i, )1 = (04*)/[(L; + L;)* — (K, + K)*],
(3.10)

for 1<i<Nand N + 1< j<2Nor N + 1<i<2N and 1< j<N,

explo(i, )] = (0A*)~'[(L, — L;)* — (K, — K;)?],
(3.1

for 1<i<Nand 1€ j<Nor N + 1<i<2Nand N + 1<j<2N.

The quantities 4, v, u;, k, L, 0, K;, L;, ;, and 7° are
constants. The symbol 2{); ; denotes the summation over
all possible combinatlons of i; = 0,1, under the condition
=N, (4, — p;, x) = m while 2") means the summation
over all possible pairs taken from 2N elements with the con-
dition i< j.

IV. CONCLUSIONS

With the purpose of looking for possible connections
among different methods for studying nonlinear field equa-
tions in more than one spatial and one temporal dimension,
we have carried out a singular-point analysis of the Davey-
Stewartson system (1.1). We have found that (i) Eqgs. (1.1)
pass the Painlevé test'” and (ii) the generalized Laurent se-
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ries (2.1) can be truncated to yield a set of Biacklund trans-
formations.

As is well known, a crucial role in the singular-point
analysis of NFE in 1 + 1 dimensions is played by the invar-
iance property of certain relations under the Mdbius group.
We remark that this characteristic is exhibited as well in our
case, where (2 + 1)-dimensional equations are dealt with.
Of special interest is the requirement of invariance under the
MGbius group of Egs. (2.22), which allows us to introduce a
free parameter in the Biicklund transformation [see (2.29)].
This is the basis for trying to formulate a Lax pair for the
given equations. Anyway, the important problem of finding
Lax pairs for NFE in more than 1 4 1 dimensions within the
WTC scheme is only beginning, and deserves further exten-
sive investigations.

Finally, we observe that for many integrable NFE in

- |

1 4 1 dimensions, the Bicklund transformations obtained in
the WTC framework are directly related to those derived by
Hirota’s method. We point out that this feature is also a
property of the nonlinear Schrédinger equation,’ which can
be considered as a reduced versionin 1 4+ 1 dimensions of the
Davey-Stewartson system. Hence it should be interesting to
look for the existence of a connection of this type also in the
case of NFE in 2 + 1 dimensions. This problem will be tack-
led in the near future.

APPENDIX: DETERMINATION OF THE N-SOLITON
SOLUTION

Here we show that (3.5) [where g and f are given by
(3.6a) and (3.6b)] is an N-envelope-soliton solution for
Egs. (1.1). In doing so, let us insert (3.6a) and (3.6b) into
Egs. (3.3) and (3.2a). We have

[(4)) (1) 2N l l
[z [—i(Q,. + iw) + ikK; + ilL, ——kz——lz](v,. — i)
u=01v=01 Li=1
2N 2 (2N)
+(Z Ki(vi—p ) (EL(V )]exP[E (vi +pudm + Y (v, +/t,u,)<p(tj)]= (A1)
i=1 i=1 i< j
and
(0) 0) 1 2 2N (2N)
> 2 2 [(2 Li(pi — '“;)) - (Z K, (u; —/‘;))]CXP[E (B +pdm: + 2 (i +;t,u,)<p(t,j)]
=0,1 4’ =0,1 i=1 i=1 i<j
g g 1y (=1 2N)
—o04? Y exp 2 v +vn + z (viv; +viv, )¢(i,j)]= (A2)
v=01+v =01 i<y
By virtue of (3.9) and introducing the quantities
Pi=Li_Kn Qi=Li+Kn (A3)
Egs. (Al) and (A2) become
0) (1) 1 2N 2 2N 2
_‘{(2 Pi(Vi—.u'i)) +(z Qi(vi_ﬂi)) —‘—ZP (vi — ;)
#n=01v=0,1 i i=1
am
-— 2 Qiv —#.)]CXP[Z Vi +pdm+ Y vy + )G, J)] (A4)
i=1 i<]j
and
(9} (0) 1 2N 2N) (2N) .
> > —2—[(2 P (u; — )(2 Q(p; — )JCXP[Z (i + 07+ Y (i +#£u;)rp(z,1)]
=01 =0, i=1 i<j
e M (=D @M
—0A4? Y exp 2 VitV + 3 (v + v )¢(i,j)]=0 (A5)
v=0,1 v =0,1 i<j

Now, according to Hirota’s notation,'® we indicate by D, (L,M,L ',M ') and D,(L,M,L',M") the coefficients of the factor

L4+ M L'+ M
S0+ S want S it S ]
i=1 i=L"+1

in (A4) and (AS), respectnvely. Then, putting o; = 1

—2u;,0;, y = — 1+ 2u,, 5, and following a procedure similar to

that used in Ref. 16, we find that D, and D, are different from zeroonly if L + L' is odd or even, respectively. Furthermore, we

have
D(LML'M") = const D,(P,0p.Pp . 1201 4 1)
Dy(LM,L'M") = const Dy (PO, rPp . 1401 4 1),
with

A R A ~ A ~ Py A Py a A ~ A A ~
D1= Z hl(Plalaglaly"~aPL+L'aL+L"QL+L'aL+L')b(Pl’Ql’al""’PL+L’9QL+L"UL+L') (A6)
= 41
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and

A ” Ly ~ A ~ A ~ A ~ A A ~ A A ~
D,= 2 hz(P101,Q|0'p---,PL+L'UL+L'9QL+L'0'L+L')b(Pl’Ql’al""’PL+L"QL+L”0L+L’)

(A7)

1 L+ L

i=1

{

Using the above properties of 31 and 132 and keeping in mind
that D, = Ofor n = 1 and D, = O for n = 2, one obtains that
D, and D, can be factorized by the polynomial
—P)(Q— Q1)

(n)
1 &
k<1
of degree 4n(n — 1) in the variables P (or in the variables

b= +1
—gAd? z b(PquUv P »QL+L WOL 4L )s
o= +1
where
Lyl o L+ L’ 1 LEE o~
m=3 ) +( T 0a) -1'5 P -3 0w
i=1 i=1 i=1
@+Lyr q (L +82)72
b= [ (P, P)(Q; — ﬂ :
,-I;I,- oAd? (@
L+L o A .
h, = z P,Q,6,0;
Q=1
with
?)i:Pir @,-=Q.~, 0; =0,
fori=12,..,L,
P ,,=—P} Q. ,1=-0N &i+L =0y N
for i=12,..,L".
Here,

;" Z”,and zm

o= +1 = 11
imply the summation over all possible combmatlons of
& = =+ 1 under the condition

+

&

1
L'
z &, =1,0,—2,

respectively; and
(L+L"

t<J
indicates the products of all the combinations of pairs chosen
among L + L’ elements.
From (A6) and (A7) one deduccs that D1 and D2 are
1nvar1ant with respect to the exchanges P - Q, and ( ,Q )

Q}) for any i< j. Furthermore, when P, P2 and
Q Q2 we have

ﬁl;@: = @.,--.)
) B —P) (D, — @,.)]
P.0,)

P07,
-2

[ 1
3 O'Az
1(P3,Qs,.-

b) ||:: "u)

and

DZ(PI)QDPZ PI,QZ Ql""
=2 H

1_3( )(P _B)©@, Q)]

X-DZ(P39Q3""’ n!Qn .
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Q) On the other hand, from (A6) and (A7) we see that D1
and D2 are polynomials in the variables P of degrees
(n— l)i+ 2and in(n — 2) + 1, respectively. Such condi-
tions on D, and D, are compatible only for» =3 and n =2,
respectively. Thus we infer that for n > 3, D, and D, arg iden-
tically zero. Moreover, we have directly verified that D, = 0
also for n = 3. Finally, remembering that D, =0 for n =2,
we have checked that (A1) and (A2) are identically satis-
fied.
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A class of GL( 0 )-invariant self-dual Yang-Mills (SDYM) equations is considered. It is
shown that the GL( 0 ) SDYM equations are reduced to the GL(#,C) SDYM hierarchy by
imposing a periodic condition. This reduction procedure makes clear a relationship between
our GL( ) SDYM equations and the usual infinite matrix representation of a single GL (#,C)

SDYM equation.

I. INTRODUCTION

The success of Sato and Sato' in the theory of soliton
equations gave us a better understanding of a class of non-
liner integrable systems (see also Refs. 2). It was pointed out
that every soliton equation [the Korteweg—de Vries (KdV)
equation, the Boussinesq equation, and so on] is embedded
in the Kadomtsev—Petviashvili (KP) equation hierarchy
whose solution space is identified with an infinite-dimen-
sional Grassman manifold (see, for example, Ref. 3). Here
the KP hierarchy is a GL ( « )-invariant infinite system of
compatible completely integrable noniinear evolution equa-
tions depending on an infinite number of time variables
t = (t,, ) men» Where N = {1,2,...}. However, there are some
nonlinear integrable systems that are outside of the KP hier-
archy but have properties very similar to those of soliton
equations. They are the stationary axially symmetric vacu-
um Einstein equation, the Bogomolny equation, and the self-
dual Yang-Mills (SDYM) equation. The first two are de-
rived from the last by specializations.*

Recently, the author® obtained a GL (n,C) SDYM hier-
archy. Here the GL(7,C) SDYM hierarchy is an infinite
(keN) system of compatible GL (kn,C) SDYM equations
on which a subgroup of GL( « ), called the loop group, acts.
But it has not been clear how to define GL( « )-invariant
SDYM equations in the spirit of Sato and Sato.

The first purpose of this paper is to present a class of
GL( o )-invariant SDYM equations as a higher-dimension-
al analog of the KP hierarchy. Here each GL(k,C) SDYM
equation (keN) is embedded in the SDYM equations. The
second purpose is to show that by imposing an algebraic
constraint called the n-periodic condition the GL(n,C)
SDYM hierarchy found in Ref. 5 is derived from our
GL () SDYM equations. This fact will make clear a rela-
tionship between the GL ( 0 ) SDYM equations and the infi-
nite matrix representation of a single GL (n,C) SDYM equa-
tion given by Takasaki.®

Il. GL(0 )-INVARIANT SELF-DUAL YANG~MILLS

EQUATIONS

Let A = (a;);,z denote an infinite matrix whose ele-
ments are arrayed as
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d_1—1 4_yp 4a_n
A= g1 Ao ag |- (1)

Let == (£,)..z be a projection matrix (E*>=2) with
§i = 1 for i>0, §; = £ (Yi» Yis2is2, ) for i< — 1 and j>0,
§; = 0 for others, where the y,’s are complex variables
(keN). It is noted that columns for j>0 of E span infinite-
dimensional subspaces C~ in C%, and E is identified with an
affine coordinate of an infinite-dimensional Grassman mani-
fold GM().">>® Let A be a shift matrix defined by
A = (8, 1),z The product of infinite matrices is defined
by

(@) ijez (bij )ijez = (Z ailblj>

i€z ijeZ

Let H be a subgroup of GL( ) of matrices H = (h;;) 2,
where h; = 1fori€Z, h; = h;(y,,.J,2,,2) ) fori< — 1,0,
and h; = O for others. ;

Solutions to the usual SU(k) SDYM equation are given
by solving the GL(k,C) SDYM equation

3,08, 0 Qc ") + 8,8, 0:°Qc ") =0, (2)
under the reality condition,” where Q,eGL(k,C). Here
d,, = d/d, and soon. We consider a system of linear equa-
tions

DkU= UAkaEkE, Dk =ayk +Aka;k,

D*U= — UA* J,8 D¥=d, — A* 3,

Yi?

(3)

where UeH. The integrability conditions of U are found to be
second-order equations on GM( « ),

3, (A*3;,Z) + 9, (A“ 3, E) + [A* 8, E.A*J; E] =0,
(4)
(35,35, — 85,8, )E =0, (5)

25 " Yk
Conversely, if = satisfies (4) and (5) then the linear equa-
tions in (3) are compatible to each other. Hence given any
solution to (4) satisfying the integrability condition (5)
there is a solution U to (3). If there is a GL( o0 )-valued
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matrix function Q such that A*3, = — 4, 0-Q~' and
A9, 2 =9,0Q ~1, then (4) is automatically satisfied.
This implies from (5) that Q should satisfy a GL( )
SDYM equation

(9,,2°¢7" +,(3,207) =0 (6)

We also note that each GL(%,C) SDYM equation (2) is
embedded in (4). To see this let us define k X k matrices

€_xo € _rk_1
k= : : . @)
§-10 §_ k-1

It is not hard to see that the =, satisfy
a a —k +a a "‘k + [a;k._.k, kEk] =0, (8)

Y Vi
from (4). Since Eq. (8) is a zero curvature condition on the
(Vx,2x ) plane, there are GL (&,C)-valued functions Q, such
thatd; =, = — 3, 0, Qi 'andd; E, =3, Q@ ',and
consequently, we have the GL(k,C) SDYM equation (2)
from (5) and (8). The remaining part of (4) determines a
sequence of infinite potentials for (2). These infinite poten-
tials are different from the usual ones discussed in Refs. 5, 6,
and 8 in the sense in which the infinite matrix = for the usual
potentials should satisfy an additional algebraic constraint
as shown in the followings. It is shown here that all solutions
to (3) lead to solutions to the GL( oo ) SDYM equation (6)
where each GL (£,C) SDYM equations is embedded. Wesay
that the linear system (3) defines the GL( o ) SDYM equa-
tions (6).

We discuss a gauge transformation of the GL( )
SDYM equation. Let G be an H-valued matrix function. If
U(eH) is a solution to (3), then U= UG (eH) is also a
solution to (3) corresponding to a solution to (4) and (5)
denoted as =. Solutions Z and E are related by the formula

{1}

A*,E =G A GEG+G (3, + UT'AUS,)G,
A*3,E=G'A*3,E-G—G~'(d, — U 'A*U3;)G.
9)

lll. PERIODIC REDUCTION

Let us consider a subhierarchy of the GL( ) SDYM
equations (keN) by imposing an additional algebraic con-
straint, which will be called the n-periodic condition. Let =
depend also on infinite parameters ¢ = (¢, ),y through

3, = [A"E.E], (10)

for meN. These are (locally in ) solved to

-1
E= exp( > th’")EO[I -2+ exp( >t A"‘)EO} ,

meN meN

(1)
where 1= (6;) 5z, E = EWi:FrsZusZx3t), E = E VeV
2;,2:;0). A set {exp(Z,.ntnA™); t€RV} forms an Abelian
subgroup of GL( o0 ). Remark that the exponential operator
exp(2,.enl,A™) describes the time evolution of the KP
hierarchy."? It will be shown that the parameters
t = (t,,) ..~ have some hidden meaning in our theory of
SDYM equations. We assume that Z satisfies, for a positive
integer 7,
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[A"E’E] =0, (12)
or, equivalently, d ": = 0. After a calculation we have
[A"E,E] = Oand&, Z = 0form = 0 (mod n). Werefer to
(12) as the n-periodic condition for the GL() SDYM
equations. Following Ref. 5, let us regard the ;>0 part of

W = (w;),,z as a homogeneous coordinate on GM( )
corresponding to Z, i.e.,

(gq i<—1" (wlj)<—-l(wu):,,>0 (13)
Jj»0 />0
For k = 0 (mod n) we can reduce (3) to
D,W=0, D¥W=0, (14)

respectively. Equation (12) implies that W takes the form of
a (block) Toeplitz matrix: W= (W,_,) .z, Where the
W,_; are n X n matrices. We note that the system D, W =0,
D*W =0,and [A",W] = Ois an infinite matrix representa-
tion of a linear system for the single GL(#,C) SDYM equa-
tion found by Takasaki.® Indeed, Takasaki discussed an infi-
nite matrix representation (in our notation)

3, (A"3; E) + 3, (A3, E) + [A"3; E,A" 3, E] =0,
(15)
[A"E,E] =0,

of the GL(n,C) SDYM equation. Thus the usual GL(#,C)
SDYM equation (15) is embedded in the GL( ) SDYM
equations satisfying (12) through the GL(£,C) SDYM
equations (8) with k = 0 (mod n). We remark that the infi-
nite (keN) system (4) and (5) satisfying the n-periodic con-
dition (12) is called the GL(#,C) SDYM hierarchy.’ Let us
remember the well-known fact that the KdV and the Bous-
sinesq hierarchies are derived from the KP hierarchy by two-
and three-periodic reductions, respectively, as subhierar-
chies.!

From (12) and (14) we have the (#Xn matrix) La-
place equations (4, d; +d,d;) W,_, =0, for k=0
(mod n), i, jeZ. The formula ( 13) implies that solutions to
the GL(n,C) SDYM hierarchy are given by a nonlinear su-
perposition of solutions to the Laplace equations. If

W,_; =0for|j—i| > >0, then the £; are well defined and
take the form of a ratio of Toeplitz determinants. Setting
k =2 and n = 1, we obtain the celebrated Atiyah—-Ward an-
satz solutions® .« to the SU(2) SDYM equation.

Finally let us consider power series solutions. Two types
of Cauchy problems for (14) are (locally) solved by using
Lie transforms of initial values. The results are

W= exp[z (zin A" 85

leN

- yInAI" ai," ) ] W(OJ,O)E))
(16)

W= exp[ S GuA~"8, —Z,A~ "3, )] W(3,0.20),

leN
where ¥ = (¥,,),.n and so on. The corresponding formal
power series solutions to the GL(n,C) SDYM hierarchy are
given through (13). We see that there are three (mutually
commuting) independent *“‘time evolution operators,” (11)
and (16). The infinite flows on GM( « ) defined by (3) gen-
erally do not commute to each other without using the peri-
odic condition (12). These facts look rather promising and it
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is reasonable to expect that we may prove a complete inte-
grability of the GL(#,C) SDYM hierarchy (4), (5), and
(12). Indeed, it is shown® that an infinite-dimensional sub-
group of GL( o0 ) called the loop group acts on the solution
space to the (#>2) GL(#n,C) SDYM hierarchy as a symme-
try group.
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The problem of computing fields produced by currents in the presence of unflawed layered
media is reduced to quadrature. Each layer either has single-axis-type anisotropy or is
isotropic. Integral equations are derived for fields in the presence of layered media with flaws.

I. INTRODUCTION

Some interesting and useful media have nontrivial struc-
ture: the Earth is layered, some superconductors are aniso-
tropic, and many reinforced composites are anisotropic in
each layer. There are many recent innovations in scattering
for anisotropic materials.'~*? Although the medium often is
the motivation, there are scientific reasons for studying ani-
sotropic scattering. Anisotropy is crucial in at least one sur-
prising electromagnetic effect.”® Also, solving the direct
scattering problem is a first step in setting up an inverse
scattering problem: in the direct problem, scattering from
“flaws” (which, in the Earth, could be great golden lodes)
usually is given at least cursory attention.

We compute exactly the electromagnetic fields pro-
duced by currents in the presence of layered media whose
layers have single-axis-type anisotropy. The writing mainly
is in terms of anisotropic conductors and steady state alter-
nating currents. However, it is shown that some or all layers
could be dielectrics or dielectric conductors; the results ap-
ply also to pulsed currents.

The problem is solved in steps, with one section of the
main text devoted to each sentence remaining in this para-
graph. The problem is defined with Maxwell equations for
steady state alternating currents in the presence of conduc-
tors. (The problem applies to other media and to pulsed
currents.) Maxwell equations are worked into a form for
which a preexisting Green’s matrix technique'? applies. The
Green’s matrix represents the field produced in one layer by
a point current in another, or the same, layer; the field is a
linear combination of four eigenmodes. The problem of com-
puting coefficients—four per layer—in the eigenmode ex-
pansion is equivalent to a boundary value problem. The
boundary value problem is solved either by inverting a band-
ed matrix or by a more elegant technique developed here.
Finally, there is a cursory treatment of electromagnetic scat-
tering for media with flaws.

The heart of this paper is an eigenmode approach to
Green’s matrices. Compared with other eigenmode tech-
niques, ours is efficiently computable and unusually explicit;

it has borne unexpected fruit.'*

Il. MAXWELL EQUATIONS

Partition R’ into layers M, (j=0,1,..,N —1) with
parallel planar boundaries. Let Z be perpendicular to all
boundaries and z; be the position of the lower boundary of
M; (j=0,1,.,N—2;z_, <z). (SeeFig. 1.) Assume, for
each M, that there are rectangular coordinates %;, y;, Z in
which the matrix conductivity is uniaxial: J; = dlag{ AN
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o; }E;. Thus conductivity (o;) along the ; axis of M; is the
same as along 2, but conductivity along X; is distinct.

Take e’ time dependence in Maxwell equations for
steady state alternating currents and define €,; =¢, — io,;/
o and €; =€, — io;/w. Then rewrite

€y 1
.Vx 6,
2VXH €2

with the matrix ¢, =diag{e €, 1€} 5€; } and a dot-product oper-
ator, p;= dlag{x P2}l as  p;oVXH = iwe; p,°E

+ p;°J. Define one fixed coordinate system p and let 0, be
the angle by which p; is rotated counterclockwise away from
p: p=diag{%-,9-,2} = T; 'p;, where

cos §; sing, O
T,={ —sin6, cosd 0
0 0 1

(Refer to p as global coordinates and p; as local coordi-
nates.) Substitute T;sp for p; and premultiply by T, ' to ob-

tain poV X H = iwT;” "+€;-T;p°E + poJ: that is,
%VXH E, Ix
JYXH |=iof; | E, | +] 7, |, (2.1)
»*VxH E, J,

where ;=T €T, has nonzero off-diagonal elements.

There is a second set of Maxwell curl equations:

M,

M,

5

Zx-2

2k

2 e M,

2k

Fk+1

IN-3
My_2

N2
My

FIG. 1. Layers and boundaries.
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i'VXE Hx
FVXE |= —ipw| H,
2VXE H

z

2.2)

Our goal is to solve curl equations for E and H in global
coordinates; the solution uses local coordinates.

Ill. SCOPE OF THE PROBLEM

Section II defines a scattering problem for stacked lay-
ers. The layers can be of dissimilar materials: the only re-
striction is that each is uniaxial or isotropic; some layers
could be free space. The problem allows each X; axis to point
in any direction perpendicular to 2. Layers can have unequal
thicknesses.

The variables o,; and o; can be complex valued and @

dependent. If o, =iw(p,;—6€)+s, and o
=io(p;, — €) +5; (With p,;,p;.s.;.5,€R), then €,; =p,;
— is,;/w and €; = p; — is;/w represent layers with uniaxial
permittivities diag{p,;,p;,p;} and uniaxial conductivities
diag{s,;,s;,s; }.

For each w, a Green’s matrix g = g(k, ,k,,0,2,z') willbe
constructed S~ _ dZ’ gJ(2') is the xy-Fourier transform
of the x and y components of E and H.
(Jz) = :f(kx,ky ,,z) is the xy-Fourier transform of cur-
rent.] The xp transforms of z components of E and H are
linear combinations of the transforms of x and y compo-
nents, as in (4.2). The scattering problem thereby will be
solved in the frequency domain. The solution for pulsed cur-
rents

f dw &' J(x,p,2,0)

evolves in similar fashion from
f do &' f dz'gJ.

0 0
i 0 0
wzgzzj —k%/u,
- wzguj ~kok,/uo

S, =
7w m2§12j + k.k,/po

- ‘02;111' + ki/,uo
0 0 k. /(we)
U - 0 0 k/(we) ’
0 1 0
-1 0 0

where §; is the /k component of §;.

Our scattering problem has a wide scope. For simplicity,
we revert to the terminology of steady state currents in the
presence of conductors.

IV. TRANSFORMED MAXWELL EQUATIONS

In previous work for single-layer conductors,’? we used
xy-Fourier transforms to equate Maxwell curl equations—
they are six coupled partial differential equations—with a
system of four ordinary differential equations (ODE’s) and
two linear equations. In this section, we apply the transform
technique to multiple layers and work the resulting ODE’s
into a form that contains local coordinates only.

An xy-Fourier transform of global coordinates

11r2f f dxdy & f (xp.2)
4.1)

takes d, into multiplicationby — ik, , d, into multiplication
by —ik,, and leaves d, unchanged. The z components of
curlsin (2.1) and (2.2) have no z derivatives, so their trans-
forms yield two algebraic equations:

]'(kx,ky,z) = 2

- k, - k.~ -
E=—m =g _-17,
wej C()é'j lﬂ)fj
- —k k (4.2)
H =—2F +—E,

Ho® Ko

The four othEr transf_’grmed equations are ODE’s. Use (4.2)
to eliminate £, and H, from the ODE’s and obtain

d,6=S,2+ U;J, (4.3)
with ¢=(E, .E,,H H,)", T = (J,,J,,J,)7, and T = trans-
pose. The matrices S; and U; can be computed with straight-
forward algebra

— k.k,/€ — o’ + ki /¢
po* — k3/€; k.k,/€;
0 0 ’
0 0

(4.4)

Equation (4.3) mixes local and global coordinates; we seek an expression in local coordinates only. Toward that end,

define &, =R;-é with

cos 6; sin 6 0 0
—~sinf, cosd; 0 0
R,= 0 0 cosf;, sin6;
0 0 —sinf; cos§;

(4.5)

Substitute R, '-¢; for € in (4.3) and premultiply by R; to obtain

3,8 =RS; R ¢ + R-U;J.

(4.6)

Let 2, =R;"S;)R; ', k;=k, cos 6, + k, sin 6, and k,,;= — k, sin 6, + k, cos 6,. A derivation in Appendix A yields
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0 0 —kgk,/e;  —pow® + ke
; 0 0 2k, /e k. k,/€;
2j=i k k . " #Oa) g4 7 T/ M | (47)
@ ki o '€ — k. /o 0
— o6y + ke — kyk, /g 0
I
Define

jj (kxj’kyjyz’) ETj.j[kx (kxj;kyj ) ;ky (kxj’kyj )z ] s
for eachj = 0,1,...,N — 1 and for each z'eR. (The role of j is
clarified in the following paragraph.) Rewrite (4.6) as
3,8 = 2,°¢; + R;*U;*T; '+J;: a statement in which every
term is in local coordinates. Straightforward multiplication
yields

3,8, =38 + YT,

(4.8)
0 0 ky/(wg)
0 k.. _
Y, =R-UT; ' = 0 (1) W/E)wel)
-1 0 0

Maxwell curl equations are solved in seven steps.

(1) Given J(x,y,2'), compute J(k, ,k,,2’).

(2) Identify a layer M; for which E and H are to be
computed.

(3) Compute

3, (kyok,2) = T3 [ Ky (kyoky ik, (Kyik )2 ],
for all Z€( — o0, ), where j is defined in the second step.

(4) Solve 3, & = 3;-¢, + Y+J; for €;(k,;,k,.2), with
zeM;.

(5) Compute
(Ex,Ey,Ex’ﬁy)T

=e(k,,k,,2) =R "¢ [k, (k. k,)k,(k Kk, )z].
_ (6) Use (4.2)
H,(k,.k,z).

(7) Invert xy transforms to obtain E(x,y,z) and
H(x,y,2).
The fourth step is the only nontrivial one; it is the subject of
the next three sections.
V. GREEN’S MATRIX DEFINITION

Theorem 5.1 solves (4.8) by quadrature:

xj*

to compute E’z(kx,ky,z) and

é(2) =f dz g(2,2)J ., (2)
yields

(E,.E,H. H,) =e=R""g,
which is continuous across boundaries.

Theorem 5.1: Let ¢be a layer index function—zeM,,,
and z2’eM ., can be in different layers; g(z,z') be a function
of k. and k, implicitly; [d, —Z2,,8(z2)=0,
VzeR\{zy,2,....zy _ 2,2’ }; R, *8(2,2’) be z continuous ex-

cept at z =z'; and g(z,2'12) — g(2,2'12) =Y 4,,.
Then

- -
1 &3
R, J dz' g(z,2')d .,
— 00
is z continuous and
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[az - 2/(z) ] f dz g(z’zl)'jﬂz) (zl)

= T/(z) 'j/‘(z) (Z), VZGR\{Z(),Z[,...,ZN_Z}.

Remark:

j/(z') (z') = j/(z/) [Kenzy (keky )ik (Kiiky )52
in the previous integral.

Proof* Continuity of R ~' fgJ results from the presumed
continuity of R ~'g.

In the remainder of the proof, assume k= AZz'),

Iy 1= — ®,Z2_1= + o, and zelnt M; = (z;,z; _, ).
Let

A=(d, — Ej)-J. dz' g(z,z’)-:fk (z").
Then

A=(3z—2,-)'g +J )dZ’g(z,Z’)-jk(Z’)

— 9, - 2,-)-0 +[" ) iz 82213, (2) + 6,
where 6 is a sum of terms like
b
(4, — Ej)'f dz g(z,2')d, ('),

with each term involving integration over a single layer and
the sum (&) involving integration over every layer except
M;. Each term in § has z-independent bounds of integration
and a z-continuous integrand; therefore, & is a sum of terms
like

b
f dz'(d, — Ej)-g(z,z')'jk () =0

6 =0, too. Evaluate A using § = 0 and elementary facts'?;
the result is

A= ljm [g(z,z’)-jk]
+f dzZ (9, — 2,)8(z2)J,.(2)
—lim [8(z2):d,]

+ fl_ dz' (3, — 3,)g(2,2)J, (2).

Thenlim, _, k=, (d, — Z;)+g = 0, and 2’ discontinuity of
g(z,z') imply A =Y;J ;. [ |
Let j=A2), k=A4z), M, _ = (z,2),
M, = (z,z,_,), and let g be as in Theorem 5.1. Then
(9, — 3,)g(z2) =0.
One supposition in the theorem equates z’ discontinuity
of g with the 3-column X 4-row matrix Y;. Thus g also is a
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34 matrix. Let f/x ,;75,, and 772 be consecutive columns of g;
then (9, — 3,)7:(2,2') =0, foré = %,,3.

If v is an eigenvector of 3; with eigenvalue 4 then
(3, — %) (ve*?) = 0. Therefore, each column ¥; is a linear
combination of four linearly independent eigenmodes. In
Sec. IV, we deliberately worked Maxwell equations into a
form with a matrix 3; whose eigenvectors and eigenvalues
are simple

(+ 214,\ - Em,-\
by = + 224,' , vy = ~ 2, ’
0 0
k Ay } Ay }
( 0 \ 0 \
Ay Ay
Py = + 23y Tl - 23y '
\— 311) + Esu)

h3
p3

+A,= £ — How’€,; + (ij/ej)kﬁz + kny]’l/Z
+ (

— 2 2 2y1/2
+dy = — po’€; + ky® + k) (5.1
|
A,(z—2) .. — A3z —2z)
ajvlje 1 7 4 djv4je 1 7,
Atz —2) — Az~ )
- a,v,et + o+ d vge ,
Ye = Az =2) — Az~ 7)
a_v,e T 4 d_vgye” ,

Ay nv-1(Z—zn_2)

ay_ 1V N-1€ + ey 1U3n_ €

(Itis true that a, = ¢, = Oalso.) Each ellipsisin (6.1) repre-
sents two eigenmodes. In M;, for example, the ellipsis repre-
sents

byvy exp[ — Ay;(z—2;)] + c;uy; exp[Ay(z—z) ].
The ¢ dependence of coefficients also is suppressed. Thus 4NV
coefficients must be determined for each é = x,,2.

The z continuity of R} *g(z,2') implies z continuity of
R ,‘) *¥,(z,2'), though neither quantity is continuous at
z = Z'. Thus z continuity yields N — 1 four-vector boundary
conditions
R/ (avy; + -+ + djvy)

_ Ay i1 (zi—2; )
— j+ll.[aj+1v1J+1e 1§+ 143" Zip

o dy gy e T
for je{0,....N — 31\{k — 1,k};
R (@ Vg 4+ + iy Vapn)
=R; “[a, v, 17
4o +d+u4ke"13"(z"“'_l)];

A -z
WA o+ d e

Rk_ 1’[G_U|ke —/l;k(zk—z')]

—R-! Atk 10— 2 4 )
—Rk+1'[ak+1vl,k +1€

—A3u v 1(Z—z ]
+...+dk+1v4,k+]e 3k + 1 + ]’
and
-1
Ryl (ay_s0iny_2+ " +dy_s04n_2)

1.
=Ry_ i (@y_1Vin_1 +Cn_1V3nv-1)-

(6.2)
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where 2, is the /k th component of Z;. (Any V/ is accept-
able, but we define Argv/e( — 7/2, + 7/2].) The eigenvec-
tor-eigenvalue correspondence in (5.1) is v;— + 4
Uy — — Ay, Uy, + 4y, and vy, — — A 5;. Therefore,

1j»
Ve = Qv + Boe” M + 0y + 8ve” M,

(5.2)
where a;, B;, ;, 6, are functions of zy,z},...,zy _ ,,2', &—and
of j = A z), but are otherwise z independent.

Assume M, and M,, _, are isotropic media'® and that g
represents waves that travel outward at z = + oo. Then the
e ™ time dependence implicit in (2.1) and (2.2) and the
choice of v/ yield ay=%,=By_1 =6x_; =0. That
expression of an outward-traveling boundary condition
completes the definition of g.

The coefficients in (5.2) are computed in the next sec-
tion.

VIi. BOUNDARY VALUE PROBLEM

Redefine the phase reference in (5.2) and use the
boundary condition by, _;, =dy_, =0

ZE(MOU"'UMN_z)\(Mk 4+ UMk— )1

(6.1)

b

r

Equation (6.1) and the z’ discontinuity in Theorem 5.1
imply

(@, —a_ vy ++dy—d Yoy =Y e (6.3)

for é = x,9,2. For each &, (6.2) and (6.3) are N four-vector
boundary conditions. The boundary conditions determine
the 4N coefficients in (6.1), subject to limitations of linear
algebra.

Vil. GREEN’S MATRIX COMPUTATION

Seven steps at the end of Sec. IV equate the problem of
solving Maxwell curl equations with the problem of comput-
ing &;. Section V opens with a computation of ¢; in terms of a
Green’s matrix g. It remains to compute g.

The Green’s matrix is computed in three steps.

(1) Obtain R; as in (4.5), k,; and k,; as follows (4.6),
2; asin (4.7), Y, asin (4.8), and eigenmodes as in (5.1).

(2) For each ée{%,9,2}, solve a boundary value prob-
lem—consisting of (6.2), (6.3), and a, = ¢, = 0—for the
4N coefficients that are not yet determined, whose base let-
ters are a,b,c, and d.

(3) Use (6.1) to compute the columns 77@ (z,2') of g.
The second step is the only nontrivial one; it is the subject of
this section and Appendix B.

For each &, carry the a-, b-, c-, and d-type coefficients of
(6.2) and (6.3) to the left and leave Y, -& on the right. The
result is a system of 4N linear equations with 4V unknowns.
The system is inhomogeneous due to Y, -é alone.

Equations (6.2) and (6.3) relate coefficients for each
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M, to, at most, coefficients for M; _, and M, ,. If coeffi-
cients are ordered by sequential layers, then the ordered sys-
tem of equations is described by a banded matrix. Thus gcan
be computed by inverting a 4V X 4N banded matrix that has
8N — 4 nonzero entries. (Figure 1 shows that each bound-
ary contributes eight nonzero entries, except z, and zy_,
which supply six each.) Some numerical techniques are effi-
cient especially for inverting banded matrices.'®

The Green’s matrix can be computed with an alternative
algorithm that inverts matrices no larger than 2 X 2. (Details
are in Appendix B.) The first step is to offer a guess—ay’
and ci) , —of the coefficients a,,_ ; and by_ . The guess
can be far from the right answer. Use (6.2), (6.3), and the
guess to compute coefficients a{ V,b {V,c{,d |V’ in successive
layers M, _,, My _;,....,M,. The result represents a state

7{ with outward-traveling waves at z= — oo, but with
both outward- and inward-traveling wavesatz= + «.Ina
similar way, use ¢’ , =c{?, =1 and a¥0’ , =c® , =0 to

construct states #? and > that satisfy (6.2) but have conti-
nuity in place of (6.3). Then determine the linear combina-
tion of the coefficients of £, ¥, and #® that equals the
coefficients of the outward-traveling mode 7.

This section completes a solution of the scattering prob-
lem for unflawed media.

VIiil. FLAWS
Present a current J to a reference medium
;P=T T, and to a flawed medium

B =¢ W 4 ¢ ™. The reference medium is homogeneous

in each layer. The flaw £ {*’ has bounded support.

The current J radiates fields that satisfy Maxwell curl
equations VXH" =iwf{™E"™ +J and VXE"™
= —iuawH" , for m = 1,2. Sections IV-VII apply to me-
dia that are homogeneous in each layer; they show E"" and
H" can be computed from

...(1) — R{’(z) f dz: g.T/(z’).j’

but they do not necessarily apply to the flawed medium § {».
Subtract the m = 1 curl equations from the m = 2 equa-
tions to obtain

VX [H(z) — H(l)] — f&)§ f((lz)),[E(Z) _ Em} + iwg (/{Az)) JE2
and
vx [E(z) - E(l)] - i,uoco[H(Z) _ H“)].

The curl equations for differences have the same form as the
m = 1 curl equations, with io¢ () E@ in place of J. It fol-
lows that

é(Z) ~ l(l)R/(z) J- dZ g'T/(zl) .(/ [;‘A) 'E(Z)],

where % is the xy-Fourier transform of (4.1). Let
G(z,2)=iwR ), 82,2 )T 11y;

then

é<2)=ém+j dZ G-F [¢£ &), . (8.1)

We wish to obtain from (8.1) an integral equation.
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Toward that goal, assume the flaw affects X and y conductiv-
ities only'’; that is, 2-{ {*> = 0. Let

_1000)
GT=(0100‘;’

§=(l 0 O). (A)_(l 0 O)T
7\ 1 0/% \o 1 0/
@ M=(E,E{™)T, and ™ =F [¢™ ; then

¢(2)_~(l)+f dz G F [gf{i (2)]

Convolve F [£,,, '@ ?] to obtain from (8.2) an integral
equation for @ ?; alternatively, compute ¢ @ = F ~![§ ?]
using (8.2) and convolution to obtain an integral equation
for ¢ @.

Define new Green’s functions g, that satisfy Theorem
5.1 and have boundary conditions g_ (zt + «;2') = 0 and
g_(zl — ;') = 0. The construction in Appendix B shows
g.(22)=0,forz>7,and g_(z2,2') =0, for z<Z. Define
Gy, and @ " as G, and @' are defined, but withg, in
place of g. Then

(8.2)

. 1 000 + o ~

¢ ('fl') = (0 1 O ) R/(Z) f dz’ g+.T/(z’).J!

— 00 _ z , ~

P = (0 10 o)’R”‘"’ J 48T d:
and

“+ oo
@ (42-) =@ (41-) +f dz Gr, 'y[gﬂz’) 4 (i)],

@(_2}_¢,<n+f 4z Gr_-F [€nsr 0],

from which we obtain integral equations for ¢ ?’. The inte-
gral equations for @ @ and @ » are similar to Fredholm and
Volterra equations used in one-dimensional quantum in-
verse scattering,'®'?
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APPENDIX A: DERIVATION OF (4.7)

Use (4.5) to multiply out
Enj = zlzj = Eﬂj = 222;' = 2:3.3,,' = 234}' =
and

3, =R;S;R; "
2"43,,' = 2441' =0

2= &Slsj +¢;5;(Syy; 4+ S14) + S?Szay,
2 =¢ Sw + ;8 (S24) — Sy3;) — 32S23,r
2oy = 80 + ¢;5;(Say — Si3) — 581y,

2oy = ‘}2524; - €;8; (S5 + Siy) + S}SISj!

(Al)
2y = C}S3lj + ¢;85; (S + Sgy;) + S}S42j7
241] = C}Suj + cjsj(S42j - 5311) - 3}532]')
2y = C}S32j + €8, (S — S3y5) — S}SM]’,
242;’ = C?S42j - €;8; (S32j + S41;) -+ S_?'Suj:
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where ¢; =cos §; and s; =sin 6;. Substitute from (4.4) for
Syy in (A1) and multiply to obtain

E13j = - Euj

) + 686 — 61D ]
ky(cjz_sjz) +stj(ki _ki)]}'

242j = {ia)[;le(C} -

= (—i/w€;) [kok, (¢ — ) +¢5,(k2 — kD), Substitute from £; = T, '+, for {y; in (A3) to compute
2y = —ipw + (i/og) (ck, +5,k,)?, (A2) Sy = — g = — (ej/ﬂo)zw,
3,y = ipow — (i/we,) (¢;k, — 5,k )%, 3y = i€, — (i/pew) (¢k, + 5;k,)? (A4)
232j = [i“’(c};zzj - 2stj§12j +S}§11j) 241j = —iwe,; + (f/,ltoa))(cjky —sjkx)z'
— (i/pew) (c;k, + 5,k,)?], The term X,,; appears in (A2). Substitute in (A2) and
[ o2 (A4) for k, and k, in terms of k,; and k,; to obtain the
2oy = [ —i0(cjbny; + 26581 +5702) nonzero elements in (4.7).
+ (i/,uoa))(c.k —s.k )2 1
s = {i _s (A3)
= {061 (6 =) + 650y — )] APPENDIX B: AN ALGORITHM FOR SEC. V
+ (/pow) [kok, (] —57) +¢55,(k5 — kD) 1} Suppress subscripts & = %,$,2. For n = 1,2,3, let
ajgn)vlje/lu(z"j) 4o 4 djgn)v“je—isj(z‘zj)’l 2e(MyU- - UMy _,)\ (M, L UM, ),
“(n) __ a(:)vlkellk(z_z') + - +d (+")U4ke—llk(z_z ), zeM, ., B1
ye= (n Aulz=2) | (m —Aplz—2) (B1)
a'y,.e + +d"v,e R zeM, _,
ax:i Win e;‘l,N— (z2—2zy._3) + C}J’l TN e'{S,N—l(z_szz), ZEMN_‘ .
{
Define a() ,=c’ ,=1 and a{’ ,=c? =0, but assign  The solution to (B2) is

any values to a}’ , and ¢}’ ,. As a further definition: the
(n = 1,2,3) coefficients satlsfy continuity condition (6.2);
the (n = 1) coefficients satisfy (6.3); and the (n = 2,3) co-
efficients satisfy a continuity condition constructed by set-
ting to zero the right-hand side of (6.3). [ Equation (6.3) is
the source of the & dependence of ¥ and #"; /@ and 7 are &
independent.] Coefficients of ™ in M, _, are given by
definition; coefficients in other layers will be computed itera-
tively. The computation yields continuous states ¥®and ),
and a state " with the same discontinuity as 7.

This paragraph describes the iterative step. Let
je{1,2,...,.N — 2,k + ,k — } and let M, be the layer immedi-
ately above M;. Suppose the following are known:
a}"’,b}”’,c}"’,d}”’ R,R,Y,,, and all the eigenvectors,
eigenvalues, and boundary coordinates appearing in (6.2)
and (6.3). For n = 1,2,3, use the appropriate boundary con-
dition from (6.2), (6.3), or the modified (6.3) to obtain an
equation of the form a{”v,, exp[wi{”] + b{"v,
xexp[w§”]  +cfPvy exp[wi]  +d Vv, exp[wi]

= (r,rpr3ry) 7, where r and the exponents w'™ are com-
puted in terms of known quantities listed in the previous
sentence. Use (5.1) to rewrite the previous equation as

G/, —B) =1y,
(Zpa/A) ;=B + (11 +68) =r,,
(Zs /) (Vi = 8)) =13,
(a; +B) — (Z3u/A) (= 8) =1y,
where

a” = (a,/Ay) exp[ —wi”],
b§” = (B/Ay) exp[ —wi”],

o = (yi/Ay) exp[ — wi™ ],
d " = (8,/Ay) exp[ —wi"].

(B2)
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1 ( 23 Ay

(n)

a;") = ry+ r+
24y, ! 2y 2

1 ( 20 Ay )
r,+ r,— ry ) expf —wi™,
2/111 * 2;321 ’ 2141 ! [ ? ]

1 2ou A
o = (r - r+ ry ) exp[ — wi™],
ufﬂl : 214[ ' 2321 : [ ? ]

r,) exp[ — wi”],

(n) _
b’ -—

1 224] /131
di” = (r2 - ro— ry)exp[ —wi”].
2/131 214I l 232! ? [ * ]
In that way, compute iteratively the coefficients
a{”,b{"M,ci.d " forallle{0,1,....N — 2,k + ,k — } and for
n=1,2,3.

Both vectors 3 and y are outward travelingin My _ ;,
but  is outward traveling in M, and 7" is not. We seek p and
g3y and ¥ + py? 4 g1 have identical outward-travel-
ing boundary conditions; then y = ¥ + pp® + ¢#*¥. Use
(B1) and the outward-traveling condition from M, to show
that p and ¢ solve the 2 X 2 system

(1) +pa(2) +qa(3) 0

c(l) +pc(2) + qc(” 0. (B3)
If the system has a unique solution then p, ¢ is it and
a, = a(.l) +pa§2) + qaf”
by=b" +pb® +gb®,
(B4)

¢ =cV +pet? + g,

dj =dj(-l) +pdj§2) _+_qdj(3)
solve the problem of computing exactly the coefficients of g
for each M;.

This appendix applies also to numerical computations
with roundoff errors. Compounding of numerical errors is
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suppressed significantly by techniques described in Appen-
dix D of Ref. 12; note also that scaling improves the numeri-
cal stability of solving (B3). The result—(B4)—of rounded
numerical computations is not a precisely correct answer,
though we expect (B4) to improve on the guess @i}’ ,,c” ;.
Thus we expect these appended computations to yield an
improved guess, for which we can repeat the computations,
hoping for further numerical improvement.
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A symmetric eight-vertex model, containing four even vertices with real weights and four odd
vertices with imaginary weights, is found to exhibit an infinite number of commensurate
phases. The phase diagram is conjectured to be a complete devil’s staircase similar to that of
certain one-dimensional systems. Associated naturally with the model are two diffeomorphic
one-dimensional maps whose asymptotic trajectories are either stable cycles or intermittently

chaotic, depending on the phase.

I. INTRODUCTION

Baxter’s solution of a symmetric eight-vertex model was
an important development in statistical physics (Baxter').
The model includes, as special cases, a large number of Ising-
like models in two dimensions that generically exhibit sec-
ond-order phase transitions (Baxter?). The mapping from
the vertices of the Baxter model to Ising spins located at the
sites of the dual lattice (Wu,?> Kadanoff and Wegner*) de-
pends crucially on the fact that all the eight vertices are even,
i.e., the number of incoming or outgoing arrows is even.

In Fig. 1, we show four even vertices and four odd ones.
These, together with their reverse vertices (in which each
arrow is reversed and the corresponding vertices are num-
bered 1’ through 8'), constitute the 16 possible vertices in
two dimensions. The Baxter model assigns real non-negative
weights to the vertices 1234 and their reverses, and zero
weights to the other eight vertices. The model is symmetric
in that w; = w,. So there are only four weights to be speci-
fied.

Now one may consider other possible symmetric eight-
vertex models by assigning nonzero weights to a different
combination of four vertices from Fig. 1. The total number
of such models is (3 ) = 70. However, there are several sym-
metries present in these models (Fan and Wu*). For exam-
ple, reversing all the horizontal arrows interchanges the ver-
tices thusly: 1<»2, 3«»4, 56, and 7<>8. There are other
symmetries one can construct that map even vertices into
odd ones and vice versa. For instance, each vertex may have
either its right arrow or the other three arrows reversed. This
interchanges 15, 26, 3«7, and 4-8.

Using all these symmetries reduces the number of inde-
pendent eight-vertex models to six. These have vertices 1234
(Baxter), 1567, 1256, 1356, 1357, and 1457. The latter five
contain both even and odd vertices, which makes it impossi-
ble to map them into two-dimensional Ising spin systems.
This is probably why they have never been studied before.

Suppose now that we have one of these six models on a
periodic lattice with M rows and N columns. The calculation
of the partition function Z starts by defining four 2 X 2 matri-

*) In memory of Elizabeth Gardner.
) Presented at the conference on “Mathematical Problems in Statistical
Mechanics,” Heriot-Watt University, U.K., 3-5 August 1987.
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cesR,,,R__,R,_,and R__ (Baxter'). The matrix ele-
ment (R, ), is the weight given to the vertex shown in
Fig. 2. Here a (a’) = + ( — ) means that the correspond-
ing arrow points up (down),and A (4') = 1 (2) means that
the arrow points to the right (left).

Given two neighboring rows of vertical arrows
a= (a,a, ay) and a{ = (aja} - -ay), the transfer ma-
trix 7' is defined to be a 2" X 2" matrix, whose elements are
given by the trace of a product of N matrices,

T =Tr (R, R, "R, ). (1)

a a)” a0 ayay

The partition function is then

Z=TrT™ (2)
We define the energy per vertex of an infinite lattice to be

= — lim (1/MN)n Z. (3)
MN~

For the Baxter model, each of the four matrices R is
nonzero, which makes the calculation of Z rather difficult.
After a brief examination of the other five models, we see
that the simplest one is likely to be the one denoted 1256,
because two of the matrices, R, _ and R_ , are then zero.
This paper is entirely about that model.

In Secs. I and III, we study two versions of 1256. The
first one has only real weights and is very simple, having only

Fh
o+

FIG. 1. The eight possible vertices with the top arrow pointing up.
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FIG. 2. The four arrow variables a, ', 4,
and A’ of a vertex.

two phases. The second one has both real and imaginary
weights and contains an infinite number of periodically
modulated phases whose stabilities depend on the values of
two parameters.

While the Baxter model describes realistic two-dimen-
sional models, our model does not describe any physical
model, because some of the weights areimaginary. However,
it seems to have properties very similar to certain nonstatisti-
cal one-dimensional models described in Sec. V. This pro-
vides a motivation for the mathematical analysis of this mod-
el.

Il. A SIMPLE MODEL OF TYPE 1256

The model has four even and four odd vertices and is
described by the matrices

R++=(w‘ w’), R__=(w2 “’6). (4)

We Wy Ws Wy
From Fig. 1 we see that the vertices are such that all the
vertical arrows in a particular column point the same way—
either up or down. With the configuration « of vertical ar-
rows being the same from one row to the next, the transfer
matrix is diagonal and is given by the elements

T,=TrR, R, R, (5

We have used the diagonality to write T,,.,, R, ,,and R_ _
more simplyas 7,,, R, ,and R_.

Among all the configurations of vertical arrows, hence-
forth called phases, the periodically modulated ones will be
found to play a special role. A convenient notation for these
is the following. Given a number / lying in the interval [0,1],
the corresponding phase P(/) will have the vertical arrow in
the n column given by

s, =sign of ([nl/2+c]—}), (6)

where [x] is the fractional part of x satisfying 0<[x] < 1. In
(6), s, is either + or — and will be called a spin. The
constant ¢ has no effect on the energy and is only mentioned
for generality.

If /is rational, the phase is called commensurate and it is
modulated in a periodic way. Examples are P(0) = 4,
P(})= + + — —, and P(1) = + —. If [/ is irrational,
the phase is called incommensurate or quasiperiodic. There
are also phases which repeat periodically but are not modu-
lated in the sense of (6). These will not be given a special
name.

Returning to the matrices R, and R_, note that they
satisfy

R_=0'R, d, )
where o' is a Pauli matrix. Hence any phase and its reverse,

obtained by interchanging + and —, contribute equally to
the partition function.
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For convenience, we define the matrices
A=R,, B=0'R,. (8)

Inside the trace in (5), any phase can equally well be written
in terms of 4’s and B’s.

For a commensurate phase P(/), let / = r/s, where rand
s are relatively prime and s> > 1, except for / = 0 or 1 when
we define s to be 1. In the enumeration of P(/) in terms of +
and —, one needs either s or 2s spins, depending on whether
r is even or odd. In terms of 4 or B however, one always
requires ssymbols of which rare B’sand s — rare 4 ’s. Exam-
ples are P(0) = A4, P(}) = AB, and P(1) = B.

For P(l), denote its matrix representation—product of s
A’sand B’s—as M(]). Thematrix M (/) has two eigenvalues.
The magnitude of these, raised to the power s—', will be
called A(/) and A(]), where A(!)>A(])>0. Note that

A(DA() = |det 4 | = |det B|. 9

The total number of phases is 2”. This number does not lead
to a finite entropy per vertex in the thermodynamic limit
M,N- . In this limit, therefore, the energy is given entirely
by the phase & (usually unique) for which T, in (5) is the
largest. Since a phase is just defined by the N spins s,, the
system is effectively one dimensional. The exponential of the
energy comes from the phase / with the largest possible
eigenvalue A, (1),
—E=Zl/MN s T¢11/N - Amax(l)‘
M- N-ow

It is now easy to compute the free energy of the 1256
model. One finds that among all phases, commensurate or
otherwise, one of only two always dominates in the thermo-
dynamic limit. There are P(0) =4 and P(1) = B. From
(4), their larger eigenvalues are

A0) = }[w, + w, + ((w, — wy)? + 4wswe)' '],
A1) = §[ws 4+ we + ((ws — we)* + 4w,w,)"2).

All other phases have a A (/) which lies in between these two
values. All the A (/) are equal if

(w, — w2)2 = (ws — w6)29

e (10)

(§3))

(12)

in which case the system is completely disordered.

Away from the surface (12), the system goes into one of
the completely ordered phases 4 or B. On crossing (12),
there is a first-order phase transition.

The 1256 model with positive real weights is therefore
extremely simple compared to the Baxter model 1234. It is
effectively one dimensional, with two ordered phases sep-
arated by a first-order transition.

Ill. A DIFFERENT 1256 MODEL WITH INFINITE
COMMENSURATE PHASES

Faced with the fairly trivial model of the last section, we
may ask whether a different choice of weights in (4) can lead
to a richer phase diagram. After some experimentation, we
discovered that the answer is yes if the number ws and wy for
the odd vertices are made imaginary! This would make no
sense if the w’s are statistical weights (i.e., real and positive).
However, we discover that the mathematics of this model is
unexpectedly similar to a class of one-dimensional systems.
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We first note that since the total number of vertices of
types 5, §', 6, and 6’ must be even in any configuration that
satisfies periodic boundary conditions, the corresponding
weight will be real. But it need not be positive and the
weights of different configurations may partially cancel each
other. For a phase P, let Z, denote the absolute value of its
contribution to the partition function, i.e., the absolute value
of the sum of the weights of the various arrangements of the
horizontal arrows.

To extract some physical sense from this mode, we de-
fine the most stable phase to be the one for which
lim,, y_ . Z ™" isthelargest. The calculation of the energy
for any phase P(/) is then similar to the previous case with
four real weights—multiply NV matrices together (or only s
matrices if the phase is commensurate) to get a matrix M(/),
calculate the absolute value of its larger eigenvalue, and raise
it to the power N ! (or s ') to obtain A (/).

Consider now the matrices (4) with w,, w, real but not
necessarily positive and w;, wg imaginary. The transfer ma-
trix element (5) only involves a product and a trace. One is
therefore free to perform a similarity transformation on R .
and R_ by a matrix of the form exp(iac'). A transforma-
tion by ¢ or ¢ is also allowed since they anticommute with
o'. With these manipulations, R , and R _ can be reduced to

(cos¢+y isin ¢ )
R+= . . s
ising cosd—y (13)
R _(cos¢—y isin¢)
"\ ising cosg+y/

where 0<#<7/2 and y>0. An overall normalizing factor has
been ignored since it affects the energy by the same additive
constant in all phases. The number of essential parameters is
therefore two, not four.

We can reduce the range of ¢ by half through the follow-
ing observation. Defining the matrices 4 and B as before, it is
easily shown that a phase P(/) has the same energy at the
point (¢,y) as the phase P’ = P(1 — I}, obtained by inter-
changing 4 and B, at the point (#/2 — ¢,y). This important
property, which will be called parity, allows one to concen-
trate on the interval [0,7/4] for ¢.

Parity is a physically meaningful transformation in
many cases. For instance, in the ANNNI model (Bak and
von Boehm,® Fisher and Selke,” Villain and Gordon®),
which also has an infinite number of commensurate phases,
parity reverses the sign of the nearest neighbor interaction J,
(making it antiferromagnetic) but keeps the second nearest
neighbor interaction as it is. In the model of Bak and
Bruinsma® mentioned in Sec. V, parity reverses the sign of
the magnetic field.

We now begin to analyze the phase diagram of the mod-
el (13). At any point (¢,y), for some phases the two eigen-
values of the matrix M(/) will be complex conjugate
numbers. Since A(NA(]) = 1 — by (9), these phases have

A=A =1 -y (14)

These phases will be called unstable.

For the other phases, the eigenvalues will be real and
will satisfy

A > =252, (15)

2684 J. Math. Phys., Vol. 29, No. 12, December 1988

The most stable or dominant phase is the one for which A (/)
is the largest since the energy is then lowest. All the other
phases satisfying (15) are merely metastable.

For y> 1, it turns out that the most stable phase is 4 for
all 0<¢ < 7/4. For ¢ = m/4, A and B have the same free
energy as expected from the symmetry under parity. The
transition across ¢ = #/4 is first order. The situation is remi-
niscent of the previous model with four real weights. Here,
however, the energies of all the other phases are greater than,
not equal to, those of 4 and B on the line ¢ = 7/4.

The interesting part of the phase diagram lies in the re-
gion 0 <y < 1. Anticipating a detailed analysis, the form of
the phase diagram is shown in Fig. 3.

The most easily derivable features of the diagram are as
follows. Along the line ¢ =0, as well as along y = 1, the
dominant phase is P(0) =A. Along ¢=n/4, it is
P(}) = AB. On the line y = 0, all phases have the same ener-
gy, namely zero.

For y small but nonzero, an interesting structure un-
folds. If 2¢/7 is fixed at a rational value, the dominant phase,
as y goes to zero, is given by / = 2¢/7. If I = r/s, the free
energy is

E() = —y/[ssin (7/25)] (16)

to first order in p. As y increases from zero, the region of
dominance of this phase initially opens up linearly and sym-
metrically about the line 2¢/7 = r/s. The region is bounded
by two lines with slopes

17

Phases of high periodicity are narrow. Beyond a point where
y is of order 1/s, the region no longer opens up but starts
contracting (except for the phase / =0 which never con-
tracts). The derivation of (17) and the rates of contraction
will be discussed later.

In view of (17), it is clear that all commensurate phases
must extend at least a part of the way up from y = 0. We have
been unable to discover completely what happens further
into the interior of Fig. 3, though we will make a conjecture.

Intuitively, one may expect either of three possibilities.

(a) Some of the commensurate phases disappear as y
increases. More precisely, for any nonzero y, all phases with s
larger than some number (which increases as y decreases)

=lo

wh

LT
-

o
A

¢

FIG. 3. The ten largest domains of the phase diagram. The rational numbers
shown are the modulation numbers / = r/s of the most stable phases, with
s<7.

Diptiman Sen 2684



are absent. There are then only a finite number of commen-
surate phases. This is called a harmless staircase.® Incom-
mensurate phases may or may not appear in between the
commensurate ones.

(b) None of the commensurate phases disappear. This
means that for any y, as ¢ increases from 0 to 7/4, between
any two phases there will be a third one. This situation has
been picturesquely named the devil’s staircase (Mandel-
brot'®). Each commensurate phase / = r/s has a finite width
in ¢ denoted A¢(l,y), and itis clear that Ap —»0ass— oo. The
devil’s staircase is called complete if these phases fill up the
phase diagram.

(c) Almost the same asin (b), except that incommensu-
rate phases appear in between the commensurate ones. The
devil’s staircase is then called incomplete.

Possibility (a) seems unlikely for the following reason.
It is easily shown that all phases have the same energy,

—4In2, at the point ¢ =7/4, y=1. As one descends
slightly from that point with a slope dy/d¢ = 1, all phases
continue to have the same energy to first order. This suggests
that all commensurate phases survive up toy = 1, albeit with
widths that go to zero as y goes to 1. This is difficult to
reconcile with scenerio (a) in which commensurate phases
with high periodicities progressively drop out, as y increases,
by becoming unstable to other phases.

We find it more difficult to analytically distinguish
between possibilities (b) and (c), though we conjecture that
the devil’s staircase is complete as in (b).

The following statement is easily proved. If /; is a fixed
irrational number and /, denotes rational numbers, then as /,
approaches /;, A(l,) - A(l;). Hence commensurate phases
can approximate the energy of incommensurate phases arbi-
trarily accurately. Though this does not prove that the dev-
il’s staircase is complete, we see that the only phases one
needs to consider in the phase diagram are the commensur-
ate ones.

How then is Fig. 3 derived? To begin, consider the phase
I = 0. This has

A(0) = cos ¢ + (3* —sin? ¢) /2. (18)

A sequence of phases approaching / = O is the series 4 *~ ' B,
s=1,2,3,..., for which / = 1/s. As s— o0, we find that

A(1/s) = A(0)(sin’¢/()? — sin® ¢))"/** (19)

ignoring terms which are exponentially small in 5. The term
A(1/s) wins or loses with respect to A (0) if the second fac-
tor in (19) is greater than or less than one. The dividing line
is therefore

y=2"%sin¢. (20)

This is the boundary of the region / = 0 in Fig. 3. The condi-
tion (20) does not depend on how the phases / approach
zero. While we used the sequence / = 1/s for simplicity, the
sequence 2/ (4s + 3) would give the same result.

The above calculation is identical in spirit to the one that
is usually done in the one-dimensional models mentioned in
Sec. V. The domain of stability of a commensurate phase is
always found by asking when it becomes energetically favor-
able to introduce a single discommensuration (McMil-
lan''), or several discommensurations with a periodicity
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much larger than the phase being studied. A discommensur-
ation is a link where the periodic structure is broken—the
spins on either side of the lin are in the desired phase but they
do not match across the link. Thus 4 °B corresponds to alter-
nating strings of R, and R _, each string being in the phase
I =0 for a length of s + 1 spins.

As another example, we consider the phase P(}) = 4B
and examine the sequence (4B)°A which has /= 2s/
(25 + 1). On comparing it to A(A4B) in the limit s— o0, One
obtains the condition

[cos ¢ + [(sin #)/x](cos 2¢ + y*)] =sin 24 + x
with

x = [sin® 2¢ — (1 — y?)?]"/2 21
This is the left boundary of the region / =1 in Fig. 3. Note
that both the curves (20) and (21) go to the point ¢ = 7/4,
»y = 1 with slope 1, as expected from a previous discussion.

The equations for the boundaries of phases with larger
periodicities become complicated quite rapidly although
certain asympiotic statements can be made. The higher
phases, with s going up to 7, have been drawn in Fig. 3in a
qualitative way keeping in mind their shapes under the start-
ing and ending points at y = 0 and 1.

This naturally brings us to the question, how does the
width of a phase / = /s shrink either as s— o or as y—1?

We first define a variable u(/,8,p),

w()y =AM /A = (1 —y*) /A% ). (22)

Note that this goes from 1 to O as y goes from O to 1. The
energy follows from u(/) through E(/) =4ilnu(l)
—11n(1 — »*). In this eight-vertex model, (/) proves to be
a very useful object.

Suppose now that y is kept fixed in Fig. 3 and we ap-
proach the right or left boundary, B, (/) or B, (I), of a par-
ticular phase /by decreasing or increasing ¢. We successively
pass through the regions of phases /' = /s’ such that /' -/
and 5" — oo. Then the width A¢ of the phase /' can be shown
to decrease exponentially as

(/) AU |5, ,r — 10 e (L), (23)

where pp, (,y) denotes the value of z(/,y) on the lines
Bg . (Ly). Thus ey ; (1,y) depends on both y and / and also
on whether we are on the line By (/) or B, (/). This is in
contrast to the models mentioned in Sec. V where
lim,_  (1/5)In A¢(!’ =r'/s') depends on y and nothing
else.

The simplest example of the dependence of 2 on y comes
from B, (0), given by (20), where

pr(0p) =[(2 =)' —yl/[(2 =)'+ y]. (24)

In the next section, we describe an interesting way of
computing the energy of any phase which is not unstable.

IV. ONE-DIMENSIONAL MAPS, STABLE CYCLES, AND
CHAOS

There is a different way of determining (/) which can
easily be implemented on a programmable calculator. This
quickly leads into the field of chaos.

The idea is to look at how a column vector changes un-
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der successive applications of the matrices A and B. For a
phase / = r/s, consider the string M (/) of 4 ’s and B ’s which
has a periodicity s. If the phase is not unstable, the eigenval-
ues of M(!/) are real and of unequal magnitude, and the ei-
genvectors must be of the form

(cosb?)
isin@/’

where @ is an angular variable of period =, satisfying — 7/
2 < <m/2. On acting with the successive matrices 4 or B of
the string M([), 6 changes. If A(/) and A(/) are real and
unequal, the sequence of 8 ’s tends to a stable cycle of periods
at a rate given by

(25)

6,.,—8
lim =252 5.

26
Jim (26)

n—s

If M(/) has complex eigenvalues instead, then the successive
iterations of @ generate a chaotic trajectory.
The matrix 4 acting on &, produces 84, |, where

_ sin(8, +¢) —ysin6,

" cos(f, +4) +ycosb,

If Bactson 6, we get 82| which is related to 67, , by
0 =64, +7/2 (28)

The maps 4 and B are diffeomorphisms (invertible and dif-
ferentiable) if y < 1.

Of all the phases that give stable cycles, the one in which
the stable cycle is aproached the fastest is the most stable
phase because it has the least energy.

In order to understand the nature of chaos in this model,
let us consider a fixed phase / and ask how the asymptotic
form of the trajectory generated by iterations of the mapping
M(]) changes with the parameters (#,y). For example, take
! =0, keep y fixed at some nonzero value, and increase ¢
from O to /4. For 2'/? sin ¢ < y, this phase is the most sta-
ble. Between 2!/2 sin ¢ = y and sin ¢ = y, the map still has a
stable fixed point but this is not the most stable cycle. Final-
ly, for sin ¢ > y, the trajectory becomes chaotic. Atsin ¢ = y,
1£(0) takes the value 1.

The transition to chaos occurs via intermittency (Po-
meau and Manneville!?), rather than through a cascade of
period doublings (Feigenbaum'*). This is true for any phase
! when the line ¢ (/) = 1 is crossed.

The neigborhood of the transition to chaos is marked by
very clear signals. On the stable side of the critical line
¢ = ¢.(l,y), there is a single stable cycle (6,6, --6;) to
which all points flow except for s points which form an un-
stable cycle. On approaching ¢ = ¢, the rate of flow slows
down as i goes to 1 from below in proportion to |¢ — ¢, |"/%
The stable cycle and the unstable one come together at the
critical line. On the chaotic side, there are no cycles, stable or
unstable, of any periodicity (except for a countable set of
points in @) and the iterated trajectory is sensitive to the
initial point. The trajectory slows down temporarily when it
passes close to the would-be stable cycle which now lies near
but not on the real axis for 6. The number of iterations re-
quired to cross a fixed small interval near the cycle blows up

as l¢ - ¢c|_]/2'

J. Math. Phys., Vol. 29, No. 12, December 1988

27N

2686

V. PREVIOUSLY STUDIED ONE-DIMENSIONAL
MODELS

That the phase diagram of a one-dimensional model
may be a devil’s staircase has been known for a long time
(Aubry,'* Bak and Bruinsma®). Regarding the experimen-
tal situation, Aubry'> and Bak'® mention several systems
that exhibit a large number of commensurate phases as some
parameter is changed. Practically, of course, one cannot ob-
serve all the steps of a devil’s staircase because most of them
are extremely narrow and sensitive to small changes in the
physical variables.

All the theoretical models contain frustration in that
they either have two competing periodicities'* or they have
long range convex antiferromagnetic interactions competing
with either a short range ferromagnetic interaction or a uni-
form magnetic field.® In our model, there is frustration in the
sense that the even vertices by themselves would prefer
phase 4, while the odd vertices would prefer phase B.

Aubry'” solved a very general class of models and
proved that they have the devil’s staircase property. The
ground state phase diagram for these models and Fig. 3 are
so similar that one might imagine that they would be identi-
cal after some complicated transformation. While this may
be true for the diagrams, we have not been able to prove an
equivalence directly at the level of the equations that deter-
mine the energy. The difficulties in attempting to do this are
twofold. First, the earlier models start by defining an energy
function which is always real. In our case, the energy is ill-
defined in the unstable phases. Second, our model naturally
leads to one-dimensional maps that do not seem to exist in
the other models. Though the original Aubry model'® has a
two-dimensional map, there does not appear to be any con-
nection between that and the one considered in Sec. IV.

It is an open question whether or not the eight-vertex
model lies in the same class as the ones discussed by Aubry.!’

VIi. FINAL REMARKS

We have presented an eight-vertex model that has an
infinite number of commensurate phases perhaps forming a
complete devil’s staircase. It is necessary to derive an exact
expression for the minimum energy as a function of (¢,y) to
determine if this is so. If it is true, one will have a new kind of
model with this remarkable property. One may then ask
what the fractal dimension 4 of the staircase is. For a fixed
value of y> 0, let the total width of all the steps which are
each less than a number » wide goas 7' ~ “as r— 0. Due to the
exponential decrease in step widths (23), the value of 4 is
zero, just as in Aubry’s case.'*!’

The model gives rise to two diffeomorphic one-dimen-
sional maps whose mathematical properties may be of inter-
est in the context of chaos. The maps depend on certain pa-
rameters, collectively denoted by . An interesting question
for further investigation might be the following. Given two
diffeomorphic maps 4, and B,, not necessarily represented
by marices as in this paper, but related by the shift (28),
when is it true that the sequence of most stable phases forms
a devil’s staircase of modulation numbers as ¢ is varied? Here
stability is defined by the rate of approach to the stable cycle.
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In its dependence on the dielectric constants €, of its homogeneous components, the effective
dielectric constant €* of a composite is a function analytic in a domain ). Some relevant
results about the effective dielectric constant are collected, including the form of (2, and then a
general representation of e* as an analytic function is given. In this representation, the
dependence on the geometry is separated from the dependence on the €}’s.

I. INTRODUCTION

Representations for the effective dielectric constant e*
of a composite material have been considered recently.'?
They allow us to find a priori bounds on €* when only partial
information is available, through moment inequalities®* or
combined with asymptotic expansions.*

Consider a dielectric composite with &N homogeneous
components. Denote by € the dielectric tensor of the ith
component and by €', a = 1,2,3, its eigenvalues. It will be
convenient to relabel the eigenvalues and consider €* as a
function of €= {e,,...,€, }; one will have M < N when some
of the components have a symmetry (e.g., are isotropic) so
that some eigenvalues coincide.

One seeks a representation in the form

e*(e) = fFu,e)u(dM, (L1

where z has support in a subset of R ™ and is completely
determined by the geometry of the composite, while F(4,¢)
are known functions. Typically, F ~'(A,€) is a polynomial in
eand A.

The most natural way to derive a representation of the
form (1.1) is to consider €*(¢) as the boundary value of a
function €*(z), zeC ¥, analytic in a domain {2, and to make
use of the representation theory for analytic functions. The
mathematical properties of Maxwell’s equations determine
the analyticity domain .

Since €* is homogeneous of order 1 in the ¢;, one can
describe the domain () using complex projective variables or
setting €, = 1 for some chosen i,. The latter procedure spoils
the symmetry, but is often convenient for practical purposes.

If M =2 (i.e., two isotropic components), the domain
of analyticity, expressed in the variable €,¢, ™", is the com-
plex plane cut along the negative real axis. In this case, the
representation is particularly simple, well known, and well
exploited.!

When M > 2 the domain  is of less familiar type. The
purpose of this paper is to give a general representation of a
function analytic in  in terms of measures supported by a
distinguished subset of the boundary of 2. When homoge-
neous variables are used, the distinguished boundary has
real dimension M — 1 and is the union of real hyperquad-
rants.
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We shall use the Martinelli-Bochner representation in
the form developed by Weyl for analytic polyhedra.® In our
case, the difficulty comes from the behavior of €* near the
distinguished boundary. To control it, we shall use informa-
tion that can be derived from Maxwell’s equations.®

The content of the paper is the following. In Sec. II we
assemble notations and recall some useful properties of the
effective dielectric constant. In Sec. III we describe the rel-
evant features of Weyl’s analysis and give the representation
for M arbitrary. In Sec. IV we study the case M = 3 and give
details on the control of the limits involved. The general case
is treated along the same lines, with an increase in bookkeep-
ing difficulties; the details will not be given here. In Sec. V we
study some properties of the representation for M = 3, and
give some simple connections with the functional represen-
tation developed in Ref. 6.

We end this introduction by comparing the representa-
tion given here with the one proposed recently by Golden.?
He works with the variables §; = z,/z,,,i = 1,...M — 1, and
remarks that ) contains as a subdomain the set
D, X..XDy,_, =D, where D,={{|Im¢;>0}. Golden
gives then a representation of type (1.1) which holds for
every function analytic in D, with suitable behavior at the
boundary.

The representation contains a positive measure support-
ed by a subset 2’ of d D; 3’ is again the union of hyperquad-
rants in R ™~ !, Positivity is a consequence of the fact that
Im €*>0wheneverIm £, >0,i=1,.. .M — 1.

In the representation given in Ref. 2, as well as in ours,
the measure on 2’ carries all the information about the ge-
ometry of the composite. The dependence on € appears
explicitly in the function F(¢,$).

An important feature of the representation introduced
by Golden is that the measure carried by 3’ is positive. One
can therefore adapt methods and results from the theory of
moments to provide a priori estimates on €*. In the represen-
tation derived here some of the measures are signed, so that a
straightforward application of the method of moments is not
possible,

On the other hand, there is no simple way to character-
ize those measures ¢ on 2’ that lead to a function which is
not only analytic in D but has also an analytic extension to £2.
There are, of course, choices of z for which the extension is
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obvious, and in fact the function is analytic in a much larger
domain. In the case M = 3 some of these cases have been
worked out and correspond to simple geometries.

The general situation is unclear, but there are indica-
tions that estimates for these particular cases can lead to
general a priori bounds on €* (Ref. 3).

. NOTATION AND PRELIMINARY RESULTS

Let DC R ? be a domain filled with a dielectric compos-
ite, made of N homogeneous components. The ith compo-
nent occupies a domain D; C D, with characteristic function
X:» and has dielectric tensor €.

For a given boundary condition on 4D, let E(x) be the
solution of Maxwell’s equations for electrostatics. The effec-
tive dielectric constant is defined as

€* =f (E,E)(x)dx, (2.1)
where f denotes average and €(x) = Z¢;y; (x). By defini-
tion, the domains D, and the boundary condition at 3D de-
fine the geometry of the composite.

Let € be the average of (x) for the given geometry

€= f (B,eB)dx,

where B is a vector field that specifies the boundary condi-
tions (in significant cases, B is a constant vector field that
represents the electric field for a homogeneous isotropic me-
dium under the same boundary conditions).

Obviously € = Zc;¢;, where ¢; depends only on the ge-
ometry. Define

€=¢€—e*. 2.2)
We shall give a representation for €'.

For fixed geometry €' is real analytic in (R *)*. Stan-
dard arguments (Refs. 2 and 6) show that € has a unique
extension to a function (still denoted by €') of M complex
variables (denoted by z;, i = 1,...,M), analytic in a domain
Q1 C C™ which is defined as follows: () is the simply connect-
ed domain which contains the point z; = 1 Vi and is bound-
ed by the hyperplanes

S ={z]z;-z;7'e( — 0,01}
¥

Alternatively, one can describe () as the set of all those z in
C™ for which there exists in C a straight line through the
origin which leaves all the z;’s on the same side.

From the definition of €* and the properties of Max-
well’s equations one can derive some further properties of *.
We shall list here the ones which will be used in the sequel.
They can be verified, e.g., using the functional representa-
tion given in Ref, 6; in particular, property (d) is due to the
fact that the limit described there is related to the spectral
measure of a bounded self-adjoint operator.

(a) The function € is homogeneous of degree 1. Since
zef) implies z; #0for all /, one can set z,, = 1 and regard 2’ as
afunction of z,,...,z,, _ , . In these variables, the boundary 302
is a collection of points for which z; >0 for an index k, # M,
and either Im 2,50, i#k,, i#M, or Im z,<0, i#kg, i#M.
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(b) Letz; =1 + Ao;, AeR. For any choice of o,€C, €' is
infinitesimal in A of order 2.

(c) Let 4 be a subset of {1,...,M}. Set z, = wif ked, z,
= { if ied. As a function of w and &, €' is given by

€Wl = (w— £)° f g (@) Aw + (1 — D)E),
2.3)

where u is a positive measure supported in [0,1].
To state the next property, consider the subset = of Jf}
defined as follows:

S={z|zedD, z,/z;,eR Vi,j, and z,/z,,€R ~
for at least one pair k,m.}

Note that 3 identifies a subset T of the real projective space
RP™, For ze3, define 4 + as

med * iff z,,/2,€(0,00)

and consider the path z(8), 8€R, given by
2,,(8) =z, +i8z,, if med™,
z,, (8) =z,,, otherwise.

It is straightforward to verify that z(8)eQ}, if §#0. More-
over for every § > 0 the continuous path

z,(6,7) =zy7+ (1 —7)z,,(6), O<r<], (2.5)
lies in © and is such that z(3,0) = 2(5), z,, (8,1) = z,, Vm.

One can now state the following property.
(d) Let ze>. Then

(24)

lgg{e'(z(a)) —€z( — 8))}

exists and defines a real-valued measure ¢ on X, which ex-
tends to a real-valued measure p on X. The measure p is
uniformly bounded on continuous functions. In terms of in-
homogeneous coordinates x,,...,x,,_ ;, this means that one
can find ¢ > O such that

U/t(dx)g(x)

<c(|gl, + |gl..), forevery geL,NC.

lll. THE REPRESENTATION FOR ARBITRARY M

Let o> 0and denote by A the disk in C that has radius

Jo and center at (Yo + (JJo) ~ 1,0). Denote by D,, the image
of A, under the map z—2*. One has D, <D, if o < ¢’, and
UgooD,=C—R™.

Let

M
D= lzeC”, H z; 760}
1
and consider the functions Z, (z), analytic in D, defined by
Z =z, i=1...M, (3.2a)

Z,,(2)=2/2, i#j, i,j=1..M. (3.2b)
We define P(M) so that one has a = 1,...,P(M). Set

.1

«"={2eD|Z,(2)eD,} (3.3)
and consider the domain
P(M)
W= FII Q,° (3.4)
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Let 27 be the connected component of # “ that contains the
point z;, = 1 Vk. The set Q2° is open, bounded, and simply
connected. By construction it is an analytic polyhedron in
the sense of Weyl.> Moreover, it is easy to verify that

N Q°=1im Q= Q,

o>0 a—-0
where (2 is the domain of analyticity defined in Sec. II. We
must introduce the sets {1° because () is unbounded and
Weyl’s theory does not apply directly. The properties (a)-
(d) will be used to take the limit 0 — « for the representa-
tions in 2°.

The boundary 917 has the form

P(M)

0= U y,% 7,°Ca0,°.
1

(3.5)

(3.6)

Let {a,,...,ay} be a subset of {1,..,P(M)}, with a,#a; if
i#j. Define

N
V(s ) = '?7’0«1,‘ (3.7)
and call the skeleton of J€} the oriented set
SOE( _ 1)M(M+l)/2 Uyoﬁ (38)
P

where the union is taken over the set P of all the subsets of
{1,....,P(M)} which contain exactly N distinct components.
With these notations, the Bochner—Martinelli formula states
that, if f(z) is analytic in (o) and continuous up to the
boundary d0° then for every ze€)° one has

f(z) — ( _ l)M(M+ l)/2(27n') -M

Xy S(A)Bg(4,2) Hd/{k! 3.9)
BeP Jy(B.ao)
where A = {4,,....Ay} and By is defined as
Bg=det(Q(a,,)), B={a..an}
kh=1,..,N, a, < <ay, (3.10)
Q(a,k)=P,; (A2)[Z,(A) —Z, ()], (3.11)
and the rational functions 2, , satisfy
N
Z,(A) = Z(2) =Y (A —2)Pyi(A2).  (3.12)
1

The P, are not uniquely determined by (3.12), but the
representation obtained is independent of the choice made.
We now study the limit ¢— « in (3.9).

Let by be the ball of radius R at the origin in C". Then,
set theoretically
lim ¥ (ay,...ay)Nb,

Tg—x

={zeC" Z,e( — »,0], i=1,.,N}

=y (ay...,ay), (3.13)

and the limit set is covered twice, coming from opposite di-
rections in , ie., from {z|/Im Z,>0 Vi} and from
{zl—ImZ, >0vi}.

Therefore, for every function analytic in € and with
property (d), one has, for all B={a,,..,ay},
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lim

T— o0

7/tr(B)ﬁ"aB/B (A’z)f(ﬂ-) H d/li

=|  By(lausdd)

7= (B)
for a measure y; on > (8).
Notice that the set = defined in Sec. II is precisely

(3.14)

2= Uy=(B). (3.15)

BeP
From (3.14) one sees that one cannot directly use property
(d) to perform the limit in the representation (3.7), since
the integrand does not belong to L,. Before taking the limit,
one has therefore to apply a subtraction procedure and make
use of properties (a)—(c).

This leads to an iteration scheme; the representation for
€'(€,...,€5) contains, in addition to new terms, terms that
also have the same structure as €'(6,,...,85), where
{8,,..,6o} is any subset of {€,,...,€» }. The general represen-
tation can best be described as follows. Consider in a plane M
points P,,...,P,,, no three of which are colinear. We call link
(i, /) the nonoriented segment joining P; with P,. A graph y
is a collection of links. We use the notation (i, j)€y to signify
that (i, j) is one of the links of ¢, and i€y to signify that one
can find j for which (i,j) belongs to . We say that k is
distinguished for ¥ (in formulas, key) if one can find two
integers i, #i, such that (i,,k)ey, (i,,k)ey.

Denote by I'(X) the collection of graphs that have ¥
points, N — 1 links, and no closed loops. Notice that if N> 2
and yel'(N), then y contains at least one distinguished
point. If N = 3, the distinguished point is unique. We then
have the following proposition.

Proposition (3.1) (representation formula): For every N,
3 <N <M, yel' (M), key, pey, p#k, one can find real val-
ued measures 7V, vV, 4" ,; such that

M
6’(61,.--,€M) = z 2 Z [A(TNyk)’ + ZB(VN‘ykp)]
4

n=2 yel' (N) key

+ 3 cwh ), (3.16)

7eT(2)

where p means that (p,k)ey, and moreover
A (TNyk ) (el’"-aeM )

1 1
EekH(E,-—Gj)J- J‘ TNyk (Hda'ij)
¥ 0 0 12
-1
VN r 1 1 pk
B . = ; — €; . W ( d,-~)
(V'ip ) (€17 €rg) g(f GJ)J; J(; kp 1;[ o

—1
X(H (0’,-1-6'}- +0'*,'j€j)) ’

1723

1 N
@i (do)
Cu™ ) (€ys€rg ) =(€;, — € zf—————” ,
,Lt A 1 M ( j) b 0'€,~ + O’*Ej
where o*=1 — 0.
The symbol IL,, indicates the product over all links in ¥
and II,, stands for the product over all links in ¥ with the
exception of (p,k).
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When M = 2 one has of course

1
, - 22 __,u_(dL_
€'(€,6,) = (€, —~ ) L (o€, + o*¢;) '

For M = 3 the general representation takes the form

3.17)

€=>"€(€—¢€)€ —€)

J“ J“ Ty (do; Xdoy, )
X
o Jo (0;€; + 0*€;) (o€, + 0% €;)

V' v . (do;)
! —€) (e — A" At A
+3 (6 —€) (e ek){J(; ey,

U v (doy) Y op;(do)
+f ——"———k———] + 3 (€ —ej)ZJ Hiyteo)
o o€ + 0% € i< o 0€; + o*¢;
(3.18)
where 3’ denotes the sum over permutations of the indices
i, jok, with i#£js£k #i.
IV. THE REPRESENTATION FOR N=3
One has

€ (€,,6,,63) = 6,6 (€,/€5,€,/€5,1). 4.1)
We shall construct a representation for the function
f(z1,2,) =€'(2,,2,,1). (4.2)

The properties (a)—(d) of Sec. II take the following form.
(a’) One can find constants C, and C, such that, uni-
formly in z, and z,,

| flkzyzy) | < (1 + |k )Cy,

(b’) For every choice of ¢£,{,€C, the function
S 4+ 8&,,1 + 8£,) is infinitesimal in § of order 2.

(c') There exist positive measures g ,,u,,145, supported
by ( ~ ,0] for which

flz,1) = M; f(l,z) = ,U'z(d}.) :
A—z A—z
— #3(dA)
flz.2) St

(d") For each i, the discontinuity of the function f
across ¥, is a measure 7; supported in
( — ,0] X ( — 0,0] and such that there exist C, for which

fmamuﬂ<amwuau

for every function geCNL,.
Here
v,°={z]z,6( — »,0], z,/2,6( — 0,01},
v,=={z|z,€( — »,0], z,/2,€( — »,01},
;/3""5{z|z,6( — ©,0], z,6( — ,0]}.

With the notation of Sec. III specialized to the case M = 2,
one has

qu=UA—2)"" @u=UA—2)"", q,=¢u=0,
@y = (A — A4:2//2) 7", gn= (4, —A2,/z) " (4.3)
so that
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If(zlskzz)l <(1+ Ik NG,

3
z4,2,) = 2 (477')_2 o AA)B;(A,z2)dA, dA,, 4.4)
Yo

where

(o) = N Yo

k#£i
B=(A,—z,) YAz /2, —A) 7,
B,=(A, —z,) " '(A1zo/2, — A2) 7, (4.5)

By=(A—z) ' —2) 7"
The B, in (4.5) are not in L,; therefore we cannot take the
limit o0 — « inside the integral in (4.4). We shall therefore
analyze the integrals in (4.4) in more detail before taking the
limit. We give details only for B;.

Notice first that the contour ¥(0,3) can be deformed to
become a subset of the Cartesian product A”X A°, where A°
=A°_ UA?_ and

A’ ={z| |z| =0, Imz> 1/|o|},

A°_={z] ~o<Rez<0, [Imz| = 1/0}

U{z| |z] = /o, Re z> 0}.

We shall use the symbol ¥ for the modified contour, neglect-
ing indices. Let

(4.6)

dA,dA
I = A 1772 ,
(7-1,22) fJ;f( ) (}»1-—21)(/12—22)
)L = {ll,ﬂq}. (4.7)
One has
1(z,,z,) — I(z;,1) — I(1,2,) + I(1,1)
=fJ (z, — D) (z; — 1)A(R)
Y
dA, di, 43

X .
(A —2) (A — 2,) (A, — D (A, — 1)

Recall now that, when 0— o, a part of ¥ covers twice the
surface {z|Im z, = Im z, = 0, Re z, <0, Re z, < 0} from op-
posite directions in Q. It follows from (d’) that the contribu-
tion from these parts of ¥ amounts, in the limit o— oo, to

(Zl"— 1)(22_ 1)

(dA,dA,)
XJJ A1 072 . (49)
Ai—z20)A—2)(A4, = 1) (A4, —1) (

We now study the contribution from the remaining part of y,
which we denote by y*, y* = U7 7,,

n=(A, XA_ )Ny, r=(A_ XA )Ny,

4.10
y:=(A, XA, )Ny. ( )
We first study
dA, dA
(A.) 1 2 EJ a-
Lf A —2) (A —2)A, — DA, = 1)
(4.11)

Since | f(kA,,4,)| diverges linearly when k— «, we cannot
take the limit inside the integral in (4.11). Notice, however,
that, uniformly in z,,z, over compact sets, J, differs by terms
that vanish when 0 — « from the function
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dA,dA
7= (A) 1 2 . (4.12)
! J:'.f 12(11_‘21)(/12-22)(11— 1)
Define W°(A,) by
Wo(A) ={A,| (Apd)er ). (4.13)

Independently of A,, the curve W (4,) has length smaller
than 270. Since | f(4,0,6)| <co uniformly in 4, the se-
quence of functions J,° converges, when o—0, uniformly
over compact sets. Therefore the limit function, which we
denote by H, (), is analytic in C — R ~. Moreover H,(z)/
|z] is uniformly bounded, since this property has been estab-
lished for J,(z) uniformly in o. Therefore H, can be written

H,(2) = (z— 1>fﬁ'—“"—'1l
A—z

for some bounded measure v,, supported by ( — »,0].

The integral over y,° can be studied similarly and con-
verges, when 0— o0, t0
v,(dA)

=(z—-1
Hy(2) = (z )f;._z

for a bounded measure v, supported by ( — «,0]. Finally
the integral over ¥;° converges to a constant c.

In conclusion, one can find measures 7,(dA, di,) on
( — 0,01 X( — «,0], and v;,(dA), v3,(dA) on ( — «,0],
and a constant ¢ such that

(4.14)

(4.15)

i — Dz -1

9 dA, dA,
(A —2) (A —2) (A, — (A, — 1)

(dA,dA)
= (z, — 1)(z, — 1)Uf 75
(z, 2, e

—2))(A;—2,)
v31(d/1) vy, (dA) ]
+Jl~z, (i-—z)+c '

lim (z
o~ wJy(a,3)

(4.16)

Similar conclusions are obtained for the two other integrals
in (4.6). From (4.4)—-(4.8) and (4.16) one concludes that
there are functions G°; analytic in the region bounded by A°
such that

f(zpzz) + \[I”(zl,zz)

= Gla(zl) + Gza(zz) + G3a(21/22)y (417)

where W7 converges, when o— «, to a function with a
known representation. Therefore also the right-hand side
converges and it is straightforward to show that the limit G
has the form

G(z,,2;) = G,(2)) + Gy(2,) + G5(2,/2,),

where the functions G, are analytic in C\R — .
Combining this remark with (4.16), one concludes

(4.18)

+ cyclic)

|
(dA dA,)
(z,z)=[( —1)( —1)” Tip(dh, dh,
f vz % o (/11—21)(12—22)
a6 - [ [0, (@)
! 2 A—z A—z,

where by “cyclic” we have indicated the terms which are
obtained by making a cyclic permutation of the indices, and
setting z; = z,/z,. The monomials of order 2 in (z, — 1),
(z; — 1), (z,/2, — 1), (2,/2z, — 1), which could otherwise
be present, are ruled out by the fact that f{(z,,2,) is regular at
z,=0 and at z,=0, and moreover |f(4,2,,4,2,)]
<csup{A,,A,}. If one takes (4.1) and (4.2) into account
and makes the change in integration variables

Aoo=(1+4)/(1 —4), 0<o],

the representation (3.21) follows from (4.19).

1t is worth mentioning that the representation (4.19) is
not unique. Indeed, since we make no statements on the
properties of the measures involved, and in particular
whether they give finite weight to sets of lower dimension,
the contribution from the measures v;; can be included in the
term with measure 7,;, substituting thls measure with 7,
+v;;(do)6(1 — 02)d02

Therefore we can assume

v;; =0, forallij. (4.20)
For the same reason, one can assume
@A) o g (4.21)

A, —2)(A, —2)
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+ cyclic] [(z1 -1 f p.(d) + cyclic] R

(4.19)

Indeed, one has
4 —2)"'Ay—2)™"!
=4, —=2) "= (A —2) YA, —A)!

so that (4.21) can be obtained through a redefinition of u s
Jj=12,3. We do not know at present whether conditions
(4.20) and (4.21) ensure uniqueness of the representation.

V. COMPARISON WITH SOME RESULTS FROM
POTENTIAL THEORY

In this section we shall discuss briefly the relation
between the analytic representation for €* derived here and
the “functional” representation derived in Ref. 5. We call
that representation functional since it expresses €* in terms
of suitable bounded self-adjoint operators on the Hilbert
space of square integrable vector fields on D. When the
boundaries of the regions D, are sufficiently regular, these
operators can be expressed in terms of integral kernels relat-
ed to potential theory.

We shall briefly recall the functional representation and
then write it in a form which is more suitable for comparison
with the analytic representation. We restrict ourselves to the
case of a composite made of three isotropic homogeneous
components.
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Let y; be the characteristic function of the domain D,
occupied by the ith component, with dielectric tensor €,/.
Let A be the orthogonal (Hodge) projection from the space
H of square integrable vector fields on D onto the space of
square integrable vector fields. In many cases, 4 takes a sim-
ple form related to potential theory. For example, if D is a
lattice cell and periodic boundary conditions are imposed,
then A acts on (periodic) vector fields F as

(AF ), (%) =b‘9— (G * div F) (x),
where G is the Green’s function for the Laplacian with peri-
odic boundary conditions.

If €, is such that |€,/¢,| < 1, i = 1,2,3, define

3
Q. (x€):= Y (1 —_ e—k) (), e={e, 66}
k=1 €y
From now on, we shall not indicate explicitly the depen-
dence on € and €,. It is easy to verify> that the representation
given below does not depend on €,,; this will also appear from
the analysis given here.

Let B(x) be the electric field solution of Maxwell’s
equation with the same boundary conditions for a homoge-
neous isotropic medium. The functional representation de-
rived in Ref. 5is then, setting € = €” — €*, where €” denotes
the average of ¢,

€ = €(B,Q A1~ 0'240'%) "1 (Q 240 )@ "*B),
(5.1)

and we have used the notation (-, ) for the scalar product in
H. We shall denote by ||-|| the operator norm in H. Regard-
ing Q as a multiplication operator, one has ||@ || < 1, so that
both (7 — Q'24Q"?)~'and (I — AQA4) ! can be expand-
ed in a convergent power series. It is then easy to verify that

€ = €,(B,QA(I — AQ) ~'AQB). (5.2)

The function (5.2) is analytic in the ¢; near the point €, = 1,
i = 1,2,3. Its power series expansion has coefficients that can
be written in terms of the moments of the spectral measure of
the operators 4y;4 in the states Ay;B and of the kernels
which represent Ay;4 in the representation in which Ay, 4
is diagonal. If the y, are characteristic functions of domains
which have a sufficiently regular boundary, all these quanti-
ties can be written explicitly in terms of Green’s functions.
On the other hand, the coeflicients of the expansion of
(4.19) in powers of the ¢, have coefficients that are related to
the moments of the measures 7,; and y;. There is therefore a
relation between the measures in (4.19) and quantities
which refer to potential theory. These relations should allow
a priori estimates on the measures, and should be particular-
ly useful if one wants to determine which class of measures
can appear in (4.19) if this formula has to represent the
effective dielectric constant of a composite for some geome-
try. This is also instrumental in proving convergence of the
measures 7;; and g, under homogenization.

The expression (5.2) lends itself to a resolvent expan-
sion which is particularly useful if two of the dielectric con-
stants of the components differ by a small amount or if two of
the components appear only as an almost homogeneous and
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isotropic subcomposite. Indeed, let f be an arbitrary func-
tion of the €,’s. One has

A — AQA) "' A=, ALf (I — Ay,4)
+ GIAXIA _AgA] _lA’ (5'3)

where {=(f— &)y, + (f— &) ys In (5.3) we have cho-
sen to single out the role of the components 2 and 3.
Suppose now that €, and €, are such that

d=|e, — €| €min{|¢ |, (|€,| + &])/2}. (5.4)
Then one can choose f in such a way that
|l[4¢4 || €inf|(1 — o) f+ €,0], O<o<], (5.5)

so that one can write the convergent resolvent expansion
A(I—AQA) 4

=6 S [fU— Ay d) + 6,4y,4 17

X{ALA [ I — Ay, 4) + €4y, 4]~

One can take, e.g., f(€) = (€, + €)/2, but other choices
could be more convenient for specific geometries.
The representation (5.2) now becomes

€= (60)2<B;QA [(I—-A4))f+€4,]

X 3 [SU-4)f+ediI4QB),  (56)

where 4,=A4y;4 and §=A4(A.
Using the fact that BeKer 4, one can verify that for
every bounded operator F one has

(B,QAFAQB ) = [1/(60)2]{(51 — 6)(€, — &)

X {B,y,AFAy,B) + cyclic}. (5.7)

From (5.6) and (5.7) one sees that €' is indeed independent
of €, and, under assumption (5.5), can be written as

C@=2 3 (6—€)E—e)

J#EiFk
X(By:,[(I—A)f+ €4,]7!

in [6(( — 4)f + €,4,) ' 1*¢:B).  (5.8)
=0

The right-hand side of (5.8) can be written as a function of
the kernels of the (integral) operators 4,: = Ay, 4,i = 1,2,3.
The term of order zero in § is, setting €, = €; = ¢,

(e, — e)zf fe,4 +€e(1 —A)) 'u,(dA).
o

Comparison with (5.2) under conditions (4.20) and (4.21)
shows that u, is the spectral measure of 4, in the state y,B.
To next order one has, setting €; =€, + § and choosing
S(€) =€,
5(e, — &) (By,le(I — 4,) + 6,4,] 'ys

X[&(I—-4,)) + flAl]_ll’lB)

+ 6(e; — 62){<B,X2[€2(I——A1) + €,4,] —1X2B)

— (BaX3[€2(I"‘A1) + 6'1141]_1,1’33)}
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1 1
= (¢, —62)28J J {le(1—A) + 4]
o JO
X [€(1 — ) + €,0]1} " 'vy(dA do) + 8(€; — €,)

XJ [e,(1 —A) + €A ] a,(dA) — a,(dA)],
(5.9)
with v;(dA do) = @3(A)@;(0)ps(dA do), where p; is the
spectral kernel of Ay ;4 in the representation in which 4y, 4
is diagonal and @, is the representative of y,B in the same
representation.

Proceeding as above, one obtains to each order of § a
sum of terms of the form

1 1
5n’J- J- {[62(1——/11)+61/11]_1"'
0 0

[6:(1 = Ay) + €45 ]~ Ia(dAy +dAnp),

with M = n’ or n' + 1, where v;(dA, dA,...dA,.) can be de-
scribed explicitly in terms of the kernel of Ay;4 and of y; B
i = 1,2,3, in the representation in which Ay,4 is diagonal.

On the other hand, from (4.19)~-(4.21), the term of first
orderin 8 is

(e — € )2fj‘ Ty3(do, doy)oy*
o : (02€3+0'362)(U3€1+‘73*€2)2

(do, do,)
+ (6, —€,) f T23 1
2 ! (0.6, + g,%€¢,)
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(do, da,)
—'(6 —€ )J T2
z l (0.6, + 01*€y)

u,(do)
2(e, — —#lag)
+2(e—e) f (o€, + 0*€,)

Comparison of (5.9) with (5.10) gives the relation of the
first moments of the measures 7,; and u; with the expecta-
tion values of the operators Ay, 4 in the states 4y;B. Com-
parison of the higher-order terms in the expansion in powers
of § gives the relation of all moments of the measures 7;; and
L; in terms of the spectral measures and of the kernels of the
operators Ay, A4

Since we have found so far no systematic way of express-
ing this relation, we shall refrain from giving here the details.
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A simple model of asymmetry in Wien dissociation of a weak electrolyte
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A simple model of Wien dissociation of a weak electrolyte is proposed in which the relative
increase in the dissociation constant, K(X)/K(0), where X is the uniform applied electric
field, is asymmetric with respect to the direction of X. The model assumes that one ionic
species of the electrolyte is mobile but that the other is fixed in a crystal or liquid crystal
lattice. The asymmetry of K(X)/K(0) is shown to arise because of the resulting asymmetry in
the boundary condition on the distribution function describing pairs of associated ions of the
electrolyte at the distance of closest approach of the ions. Solutions for the association rate
constant 4 and K(X)/K(0) of the model electrolyte are obtained by solving the partial
differential equation governing the streamfunctions that describe the two ionic states of the

electrolyte.

I. INTRODUCTION

In the mathematical theory of Wien dissociation of a
weakly dissociated electrolyte! it is assumed that in the ion-
ized state the ions of the electrolyte are mobile point charges
occupying a space of infinite extent. A consequence of this is
that the relative increase in the dissociation constant, K(X)/
K(0), due to the application of a uniform electric field X is
symmetric with respect to the direction of X. In his analysis
of the partial differential equation governing the distribution
function describing associated ion pairs of a weak electrolyte
which lead to his well-known (symmetrical) result

K(X) _ L,[(86)'"?)]

= , 1.1
K(0) (2e)'? ¢

where I, is the modified Bessel function of the first kind of
order 1 and ¢ is the field-dependent parameter,’ Onsager’
remarked “a generalization of this equation to crystals of
lesser symmetry would be desirable but leads to a differential
equation that is much more formidable than the equation for
a point-charge electrolyte.” (Italics indicate words inserted
by the author.)

In Sec. II we propose a simple model of such an asym-
metry in the Wien dissociation of a weak electrolyte for
which, when compared to Eq. (1.1), the value of X(X)/
K (0) is enhanced in one direction of the applied electric field
(the forward-field direction) but is reduced in the opposite
direction (the reverse-field direction). In Sec. III this model
is analyzed by solving the partial differential equation gov-
erning the streamfunctions that describe the two ionic states
of the model, viz., the dissociated state and the associated
state. Expressions for the association rate constant 4 and
K(X)/K(0) are deduced for the model weak electrolyte and
a strong asymmetry is demonstrated to exist between the
values of K(X)/K (0) for forward and reverse applied elec-
tric fields.

Il. THE MODEL

We suppose that the model weak electrolyte is com-
posed of mobile point ions (7ions) of charge e; and opposite-
ly charged point ions ( jions) of charge e; that are fixed in a
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crystal or liquid crystal lattice. The orientation of the lattice
is itself fixed with respect to the direction of the uniform
applied electric field X, e.g., it could be part of the internal
structure of a polarized membrane.

Taking the origin O of polar coordinates at the position
of a jion we call the polar coordinates of the /ion of an i, j pair
r,0, where @1is the angle between X and r. We further suppose
that the molecular groups to which the jions are attached in
the lattice, hereafter referred to as the dielectric bases, block
the free passage of { ions in the region 7/2 < 6< at least in
the region close to the jions, when X is in what we shall call
the forward applied field direction. The arrangement for
such a field is depicted in Fig. 1. With the applied electric
field in the opposite direction, which we shall refer to as a
reverse applied field, the dielectric bases block the free pas-
sage of i ions in the region 0<8 < 7/2 at least in the region
close to the j ions. Figure 2 shows the arrangement for the
reverse field case.

If the dielectric bases were, e.g., spheres of radius b,
previous calculations® indicate that as far as the effect that
the total electrical potential ®(7,0) of an , j pair has on the
value of 4 and K(X)/K(0) is concerned, the effect of these
bases is negligible provided 5«1 (in units normalized with
respect to the characteristic length 2g of the weak electro-
lyte, where ¢ = — e,;;/2DkT >0, D is the dielectric con-
stant of the medium, k is Boltzmann’s constant, and T is
absolute temperature) being O(e ~'/?). Thus we shall as-

7

FIG. 1. The forward-field case. Cross-hatched areas represent the dielectric
bases.
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FIG. 2. The reverse-field case.

sume for simplicity that the average radius b of the dielectric
bases is such that b € 1 and we therefore have with very good
accuracy in these calculations that

®(r,8) = — 1/r—2ercos b, 2.1)

where r and @ have been nondimensionalized on division by
the characteristic length and characteristic potential k7, re-
spectively, and € = 28q, B = ¢,;|X|/2kT. As in the previous
analysis® we neglect the effect of the ionic atmospheres and
to be specific we take e; > 0, ¢; <0 so that Sand €>0.

The main effect of the dielectric bases is on the boundary
condition at the distance of closest approach of the i and j
ions for the distribution function f?(r,0) describing asso-
ciated ions. At all points of the surfaces of these bases an
equilibrium will exist. Thus on these surfaces

fPre)y=e""—1, (2.2)
since the normalized value of the distribution function de-
scribing dissociated ions, f V(7,6), is unity.> The only charge
singularity on the surface of the dielectric bases is at the
origin so for forward applied fields

SP(r,0)~e"" as r-0, 0<6<7n/2, (2.3)
and by comparison
fPr6) =0 (2.4)

effectively, at all other points on these surfaces. Equation
(2.3) is more conveniently written as

lime~Vf?(r,0) =1, 0<0<n/2, (2.5)
r—-0

and Eq. (2.4) may be rewritten as
@) =0, w/2<6<m, (2.6)

on the surfaces of the dielectric bases. For reverse applied
electric fields the boundary conditions are

lime~Vf?(r0) =1, w/2<6<m, 2.7
r—0

and Eq. (2.4) becomes
fP(r6)=0, 0<8<n/2, (2.8)

on the surfaces of the dielectric bases. The condition for the
total dissociation of an ion pair

lim f@(r,0) =0, 2.9)

r— oo

for all 9, applies to both forward and reverse applied fields
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and completes the boundary conditions for this model.
Clearly the properties of the weak electrolyte are symmetri-
cal about the direction of X so that we may further assume
that Egs. (2.5)-(2.9) hold for all azimuthal angles.

Ili. MATHEMATICAL RESULTS

In analyzing our model electrolyte we have the follow-
ing cases.

A. Forward applied electric fields
The distribution function for dissociated ions is?
FOr6) =1, (3.1)

and i ions associate with the central j charge only along tra-
jectories that meet the origin at angles 6<#/2. Using Eq.
(3.1) we have?

1)
—-‘—9—+sin (1 —2er cos 8) =0, 3.2)
90
(1)
%’r— + 2ersin® 6 =0, (3.3)

where g"'(7,0) is the streamfunction describing dissociated
ions. Equations (3.2) and (3.3) have the solution

g(r,0) = —cos 0 —ersin’ @ +a, (3.4)

where «a is a constant. This solution holds in the region of
association, which is shown in the cross section in Fig. 3, and

on its boundary. Outside this region no association of i ions
with j ions occurs because of the presence of the dielectric
bases. No association flux crosses the boundary of the region
of association, which is formed by the streamlines that meet
the origin at 6 = 7/2. These streamlines must correspond to
gY(r,0) =0 and therefore g'(0,7/2) =0 and Eq. (3.4)

then gives @ = 0. Thus in the region of association and on its
boundary,

g (r,0) = — cos 6 — e sin® 6. 3.5)

Next, in Fig. 3, choose any point Q not coincident with
O on the boundary of the region of association and any point
P(r,0) with > 0Qon the ray & = 0. Referring to Eq. (2.11) of
Paper I (Ref. 2), if we choose for S a closed surface of revolu-
tion generated by any axial curve OQP, then it follows from

—
S

—P
"y

/

FIG. 3. The cross-hatched area depicts a cross section of the region of asso-
ciation for the forward-field case.
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the definition® of a streamfunction and Eq. (3.5) that the
association rate constant is given by

A= —27g"(r,0) =2m. (3.6)

For associated ions, dissociation of /, j ion pairs occurs
along trajectories that emanate from the origin at angles
9< /2. A cross section of the region of dissociation is shown
in Fig. 4. In this region and on its boundary

fPr0) = exp( 1 + er(cos 6 — 1))

1
XJ Io[(SES)”zcosg—] e"ds  (3.7)
(V]

(where I is the modified Bessel function of the first kind of
order zero) because this function satisfies the boundary con-
ditions (2.5) and (2.9) and the partial differential equation
obtained by eliminating the streamfunction describing asso-
ciated ion pairs, g2 (7,6), from Eqgs. (3.8) and (3.9) below.?
This differential equation is also satisfied by the solution
f®(r,8) = 0, which satisfies the boundary conditions (2.6)
and (2.9) and is therefore the solution outside the region of
dissociation. Clearly no dissociation of ion pairs can occur
outside the region of dissociation.
From paper I,

(2) (2)
72sin 8 <— o %" +sin 8(1 — 2er?cos @)f? =0

or a6
(3.8)
f(2> 3g?
sin 8 X — 0 8 = 4 2ersin? 8P = 3.9)
and from Eq. (3.7)
@)
%"=(—~i——:l;+e(cos€— 1))f(2) (2;1(?:"9;) G0 o
3.1
where
1
G(r,@):f sfo{(Ses)”zcosg—] e " ds (3.11)
0
and
! 0
F(r,0) ==J‘ I(,[(Ses)”2 cos;]e“’/’ds. (3.12)
0 .

Also

FIG. 4. The cross-hatched area depicts a cross section of the region of disso-
ciation for the forward-field case.
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ar? ( . 1 . 0H(r0))
=\ 6+ L) f@, (313
] ersing +-sin -2 S G
where
1
H(r0) = — (86)”zf s“’zll[(&s.s*)‘*'2 cos%] e~ ds.
(7]

(3.14)
Thus from Egs. (3.9) and (3.13)

2)
agr = —~-21—rsin-g-sin Hexp(%-ker(cos@— 1))

x(H(r,a) +4ercong(r,6)) (3.15)

and on integrating by parts we can show from Eq. (3.14)
that

H(r,0) + dercos(8/2)F(r,8)

= (8€)"%re = "I, (8€)? cos 6 /2] (3.16)
and using this equation, (3.15) becomes
<
% —L(Se)"zsinﬁsinf)
ar 2
X expler(cos 6 — 1))11[(85)”2 cos g] . (317
From Egs. (3.8) and (3.10) it follows that
2)
29 -—s1n0exp( 1 + er(cos 8 — 1))
a9 r
X{G(r,68) — (r + €*(1 + cos 8))F(r,0)}. (3.18)
From Eq. (3.11), on integrating by parts,
G(r6) = VL[ (8€)2 cos(8/2) ]
+ rF(r,8) — (r/2)cos(8 /2)H(r,0), (3.19)
and, using Eq. (3.16), this becomes
G(r,0) — (r+ €r*(cos 8 + 1))F(r,8)
= —re  ""I,[(8¢)"% cos(8/2)]
— [(B€)'72/217 cos(6/2)
Xe VI, (8€)"?cos(8/2)]. (3.20)

Finally, using Eq. (3.20), Eq. (3.18) becomes
3@
a6

= — sin @ exp(er(cos § — 1))[10[(86) Y2 cos g]

1/2
+ —(§%)——— r cos —g—]l[(86)”2 cos %” . (32h
On integrating Eq. (3.17) with respect to r we obtain
2 _ 2_ 172 ﬁ. s 9
g2(r0) = cos — I,} (8€)'/? cos —
€ 2 2

X expler(cos 8 — 1)) + C(9), (3.22)

where C(6) is a function of @ only, and on integrating Eq.
(3.21) with respect to @ and using the identity
Io(u) =TI (u) + (1/u)l,(u), we obtain

g2 (r0) = (3)1/2 c:osgll[(SG)”2 cos —?—]
€ 2 2
X expler(cos 8 — 1)} + E(r), (3.23)
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where E(r) is a function of 7 only. On comparing Eq. (3.22)
and (3.23) we must have C(6) = E(r) = 7, where 7 is a
constant. Thus

172
g2(r6) = (—2—) cosill[(&s)”2 cos—a-]
€ 2 2

Xexpler(cos 8 — 1)) + 7. (3.24)

No dissociation flux crosses the boundary of the region
of dissociation formed by the streamlines that emanate from
the origin at 8 = /2. These streamlines must correspond to
g?(r,0) = 0 and therefore g?(0,7/2) =0 and Eq. (3.24)
gives

y= — (1/e'")I|[ (4€)'?] (3.25)

and so in the region of dissociation and on its boundary

172
g2(r6) = (i) cos -211[(86)”2 cos f—]
€ 2 2

X expler(cos § — 1)) — ———11/2 I,[(4e)"?].
€
(3.26)

If, in Fig. 4, we select any point Q not coincident with O
on the boundary of the region of dissociation and any point
P(r,0) with >0 on the ray 8 = 0, then, referring to Eq.
(2.13) of Paper 1, if we choose for S a closed surface of
revolution generated by any axial curve OQP, it follows from
the definition® of a streamfunction and Egs. (3.6) and
(3.26) that

KX) _ 27 =(1)”2 172
K(O)—Ag‘(r,m - I,[(8¢)'?)

— L e

o (3.27)

B. Reverse applied electric fields

For dissociated ions, Eq. (3.1) is again valid and i ions
associate with the central j ions only along trajectories that
meet the origin at angles @>/2. Thus the solution for the
streamfunction describing dissociated ions in the region of
association and on its boundary is again given by Eq. (3.4).
The region of association is shown in cross section in Fig. 5,
the boundary being formed by the streamlines that meet the
origin at @ = 7/2. Thus on the boundary g'"'(7,0) is constant
such that

gV(7,0) = g"(0,7/2). (3.28)

t>-4
A

FIG. 5. The cross-hatched area depicts a cross section of the region of asso-
ciation for the reverse-field case.
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Also, by symmetry the ray § = 7 is a streamline and
gV (rm) =g (0,m) =0. (3.29)

Therefore, from Eq. (3.4), a = — 1; thus in the region of
association and on its boundary

g"(r0) = —cos@—ersin®* 0 — 1. (3.30)

Next, in Fig. 5, choose any point Q not coincident with
O on the ray 8 = 7 and any point P(7,8) with r>0 on the
boundary of the region of association. Referring to Eq.
(2.11) of Paper 1, if we select for S a closed surface of revolu-
tion generated by any axial curve OPQ then it follows from
the definition® of a streamfunction and Egs. (3.28) and
(3.30) that

A= = 27g"V(0,7/2) = 27. (3.31)

For associated ions dissociation of i, j pairs occurs along
trajectories that emanate from the origin at angles 6> 7/2.
The region of dissociation is shown in cross section in Fig. 6.
In this region and on its boundary Eq. (3.7) is again valid
because it satisfies both boundary conditions (2.7) and
(2.9) and the governing differential equation for f®(r,8).
Outside this region the solution f®(r,8) =0 also again
holds and no dissociation of ion pairs can, of course, occur
outside the region of dissociation. Clearly, the solution given
by Eq. (3.24) is again valid in the region of dissociation and
on its boundary. Since the latter is formed by the streamlines
that emanate from the origin at @ = 7/2, it follows that on
the boundary g?(r,6) is a constant such that

g2(r,0) =g?(0,7/2). (3.32)
Also by symmetry the ray 8 = 7 is a streamline and so
g?(rm) =g%(0,m) =0. (3.33)

Then Eq. (3.24) gives ¥ = 0, and so in the region of dissocia-
tion and on its boundary

172
g2 (r0) = (—2—) cos —lslll[(&s)”2 cos —6—]
€ 2 2
X expler(cos 8 — 1)). (3.34)

If in Fig. 6 we choose any point Q not coincident with O
on the ray = 7 and any point P(7,0) on the boundary of the

FIG. 6. The cross-hatched area depicts a cross section of the region of disso-
ciation for the reverse-field case.
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FORWARD FIELDS

REVERSE FIELDS

FIG. 7. — represents K(X)KX(0) for the asymmetric Wien effect [Egs.
(3.27) and (3.35)]. — - — represents Onsager’s K(X)/K(0) [Eq. (1.1)].

region of dissociation, then referring to Eq. (2.13) of Paper
I, if we select for S a closed surface of revolution generated by
any axial curve OQP, it follows from the definition” of a
streamfunction and Eqgs. (3.31), (3.32), and (3.34) that

KGO _ 20 oo, 7)_ 11 (aey
K(O) A g !2 61/2 ][( 6) ]'

In Fig. 7 we show the graph of K(X)/K(0) vs € drawn
from Eqgs. (3.27) and (3.35). The asymmetry in K(X)/

(3.35)
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K (0) is seen to be very marked: when compard to Eq. (1.1),
K(X)/K(0) is considerably enhanced for forward applied
fields and is much reduced for reverse applied fields.

A possible application of this model lies in the control
mechanism for membrane permeability in nerve.® However,
the nerve membrane is a thin membrane of thickness §~1
whereas we have tacitly assumed that §> 1 in the foregoing
analysis. If we denote the streamfunction describing asso-
ciated ions in the ordinary (symmetric) Wien effect by
g2(r,0) [see, e.g., Eq. (5.62) of Paper I], then we may
write, from Egs. (3.27) and (3.35),

K(X)/K(0) =g?(0,0) — g?(0,7/2), (3.36)
for forward applied fields and
K(X)/K(0) =g?(0,7/2) (3.37)

for reverse applied fields. In applying our model of the asym-
metric Wien effect to the nervous membrane, Egs. (3.36)
and (3.37) apply rather than Eqgs. (3.27) and (3.35), and to
complete the solution to this problem it would therefore be
necessary to compute g2(0,0) and g®(0,7/2) for the case
6= 1. The latter problem has not yet been solved.
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